Skip to main content

Topological Structure of a Boolean Network

  • Chapter
Analysis and Control of Boolean Networks

Part of the book series: Communications and Control Engineering ((CCE))

  • 1624 Accesses

Abstract

In this chapter a formulation of Boolean networks is introduced and their topological structure is then investigated. The matrix expression of logic, discussed in previous chapters, is used and, under this framework, the dynamics of a Boolean network equation is converted into an equivalent algebraic form as a standard discrete-time linear system. Analyzing the transition matrix of the linear system, easily computable formulas are obtained to show (a) the number of fixed points, (b) the numbers of cycles of different lengths, (c) the transient period, which is the time for all points to enter the set of attractors, (d) the basin of each attractor. In addition, algorithms are developed to calculate all the fixed points, cycles, transient periods, and basins of attraction of all attractors. This chapter is partly based on Cheng and Qi (IEEE Trans. Automat. Contr. 55(10):2251–2258, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16, 727–734 (2000)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.: Dynamics of complex systems: Scaling laws for the period of Boolean networks. Phys. Rev. Lett. 84(24), 5660–5663 (2000)

    Article  Google Scholar 

  3. Albert, R., Othmer, H.: The topology and signature of the regulatory interactions predict the expression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  4. Aldana, M.: Boolean dynamics of networks with scale-free topology. Phys. D: Nonlinear Phenom. 185(1), 45–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE Trans. Automat. Contr. 55(10), 2251–2258 (2010)

    Article  MathSciNet  Google Scholar 

  6. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complexity of bounded model checking. In: Verification, Model Checking, and Abstract Interpretation. Lecture Notes in Computer Science, vol. 2937, pp. 85–96. Springer, Berlin/Heidelberg (2004)

    Chapter  Google Scholar 

  7. Drossel, B., Mihaljev, T., Greil, F.: Number and length of attractors in a critical Kauffman model with connectivity one. Phys. Rev. Lett. 94(8), 88,701 (2005)

    Article  Google Scholar 

  8. Farrow, C., Heidel, J., Maloney, J., Rogers, J.: Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans. Neural Netw. 15(2), 348–354 (2004)

    Article  Google Scholar 

  9. Goodwin, B.: Temporal Organization in Cells. Academic Press, San Diego (1963)

    Google Scholar 

  10. Harris, S., Sawhill, B., Wuensche, A., Kauffman, S.: A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7(4), 23–40 (2002)

    Article  Google Scholar 

  11. Heidel, J., Maloney, J., Farrow, C., Rogers, J.: Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int. J. Bifurc. Chaos 13(3), 535–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, S.: Regulation of cellular states in mammalian cells from a genomewide view. In: Collado-Vodes, J., Hofestadt, R. (eds.) Gene Regulation and Metabolism: Post-Genomic Computational Approaches, pp. 181–220. MIT Press, Cambridge (2002)

    Google Scholar 

  13. Huang, S., Ingber, D.: Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Exp. Cell Res. 261(1), 91–103 (2000)

    Article  Google Scholar 

  14. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annu. Rev. Genom. Hum. Genet. 2, 343–372 (2001)

    Article  Google Scholar 

  15. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437 (1969)

    Article  Google Scholar 

  16. Kauffman, S.: The Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, London (1993)

    Google Scholar 

  17. Kitano, H.: Systems biology: a brief overview. Science 259, 1662–1664 (2002)

    Article  Google Scholar 

  18. Langmead, C., Jha, S., Clarke, E.: Temporal-logics as query languages for Dynamic Bayesian Networks: Application to D. melanogaster Embryo Development. Tech. rep., School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (2006)

    Google Scholar 

  19. Li, Z., Zhao, Y., Cheng, D.: Structure of higher order Boolean networks. Preprint (2010)

    Google Scholar 

  20. Mu, Y., Guo, L.: Optimization and identification in a non-equilibrium dynamic game. In: Proc. CDC-CCC’09, pp. 5750–5755 (2009)

    Google Scholar 

  21. Nurse, P.: A long twentieth century of the cell cycle and beyond. Cell 100(1), 71–78 (2000)

    Article  Google Scholar 

  22. Robert, F.: Discrete Iterations: A Metric Study. Springer, Berlin (1986). Translated by J. Rolne

    Book  MATH  Google Scholar 

  23. Samuelsson, B., Troein, C.: Superpolynomial growth in the number of attractors in Kauffman networks. Phys. Rev. Lett. 90(9), 98,701 (2003)

    Article  MathSciNet  Google Scholar 

  24. Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  25. Waldrop, M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Touchstone, New York (1992)

    Google Scholar 

  26. Zhao, Q.: A remark on ‘Scalar equations for synchronous Boolean networks with biologicapplications’ by C. Farrow, J. Heidel, J. Maloney, and J. Rogers. IEEE Trans. Neural Netw. 16(6), 1715–1716 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daizhan Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cheng, D., Qi, H., Li, Z. (2011). Topological Structure of a Boolean Network. In: Analysis and Control of Boolean Networks. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-097-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-097-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-096-0

  • Online ISBN: 978-0-85729-097-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics