Visualization of Time-Oriented Data pp 127-145 | Cite as
Analytical Support
Chapter
- 3.9k Downloads
Abstract
This chapter sheds some light on analytical methods to support the analysis of time-oriented data. A general overview of temporal data analysis is provided and specific application examples will be used for demonstration.
Keywords
Principal Component Analysis Data Abstraction Line Plot Analytical Support Cluster Hierarchy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Antunes, C. M. and Oliveira, A. L. (2001). Temporal Data Mining: An Overview. Workshop on Temporal Data Mining at the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). Google Scholar
- Bade, R., Schlechtweg, S., and Miksch, S. (2004). Connecting Time-oriented Data and Information to a Coherent Interactive Visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), pages 105–112, New York, NY, USA. ACM Press. Google Scholar
- Brockwell, P. J. and Davis, R. A. (2009). Time Series: Theory and Methods. Springer, New York, USA, 2nd edition. zbMATHGoogle Scholar
- Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27(3):289–350. CrossRefGoogle Scholar
- Combi, C., Keravnou-Papailiou, E., and Shahar, Y. (2010). Temporal Information Systems in Medicine. Springer, Berlin, Germany. CrossRefGoogle Scholar
- Fayyad, U., Grinstein, G. G., and Wierse, A. (2001). Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco, CA, USA. Google Scholar
- Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3):37–54. Google Scholar
- Gan, G., Ma, C., and Wu, J. (2007). Data Clustering: Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA, USA. zbMATHCrossRefGoogle Scholar
- Han, J. and Kamber, M. (2005). Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco, CA, USA. Google Scholar
- Hsu, W., Lee, M. L., and Wang, J. (2008). Temporal and Spatio-Temporal Data Mining. IGI Global, Hershey, PA, USA. Google Scholar
- Jackson, J. E. (2003). A User’s Guide to Principal Components, Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New York, NY, USA. Google Scholar
- Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data Clustering: A Review. ACM Computing Surveys, 31:264–323. CrossRefGoogle Scholar
- Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., and Chang, R. (2009). iPCA: An Interactive System for PCA-based Visual Analytics. Computer Graphics Forum, 28(3):767–774. CrossRefGoogle Scholar
- Jolliffe, I. T. (2002). Principal Component Analysis, Springer Series in Statistics. Springer, New York, NY, USA, 2nd edition. zbMATHGoogle Scholar
- Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F., editors (2010). Mastering the Information Age – Solving Problems with Visual Analytics. Eurographics Association, Geneve, Switzerland. Google Scholar
- Keim, D. A., Mansmann, F., Schneidewind, J., and Ziegler, H. (2006). Challenges in Visual Data Analysis. In Proceedings of the International Conference Information Visualisation (IV), pages 9–16, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
- Laxman, S. and Sastry, P. (2006). A Survey of Temporal Data Mining. Sādhanā, 31:173–198. MathSciNetzbMATHGoogle Scholar
- Lin, J., Keogh, E. J., Wei, L., and Lonardi, S. (2007). Experiencing SAX: A Novel Symbolic Representation of Time Series. Data Mining and Knowledge Discovery, 15(2):107–144. MathSciNetCrossRefGoogle Scholar
- Miksch, S., Horn, W., Popow, C., and Paky, F. (1996). Utilizing Temporal Data Abstraction for Data Validation and Therapy Planning for Artificially Ventilated Newborn Infants. Artificial Intelligence in Medicine, 8(6):543–576. CrossRefGoogle Scholar
- Miksch, S., Seyfang, A., Horn, W., and Popow, C. (1999). Abstracting Steady Qualitative Descriptions over Time from Noisy, High-Frequency Data. In Proceedings of the Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making (AIMDM), pages 281–290, Berlin, Germany. Springer. Google Scholar
- Mitsa, T. (2010). Temporal Data Mining. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Boca Raton, FL, USA. zbMATHCrossRefGoogle Scholar
- Nocke, T., Schumann, H., and Böhm, U. (2004). Methods for the Visualization of Clustered Climate Data. Computational Statistics, 19(1):75–94. MathSciNetzbMATHCrossRefGoogle Scholar
- Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages 336–343, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
- Stacey, M. and McGregor, C. (2007). Temporal Abstraction in Intelligent Clinical Data Analysis: A Survey. Artificial Intelligence in Medicine, 39(1):1–24. CrossRefGoogle Scholar
- Thomas, J. J. and Cook, K. A. (2005). Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society, Los Alamitos, CA, USA. Google Scholar
- Van Wijk, J. J. and Van Selow, E. R. (1999). Cluster and Calendar Based Visualization of Time Series Data. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), pages 4–9, Los Alamitos, CA, USA. IEEE Computer Society. CrossRefGoogle Scholar
- Ware, C. (2008). Visual Thinking for Design. Morgan Kaufmann, Burlington, MA, USA. Google Scholar
- Wegner, P. (1997). Why Interaction Is More Powerful Than Algorithms. Communications of the ACM, 40(5):80–91. CrossRefGoogle Scholar
- Xu, R. and Wunsch II, D. C. (2009). Clustering. John Wiley & Sons, Inc., Hoboken, NJ, USA. Google Scholar
Copyright information
© Springer-Verlag London Limited 2011