Advertisement

Smith-predictor-based Control

  • Antonio Visioli
  • Qing-Chang Zhong
Part of the Advances in Industrial Control book series (AIC)

Abstract

When the dead time of the integral process is significant, traditional control schemes such as those seen in the previous chapters might not be sufficient to obtain the required performance. In these cases, a dead time compensator can be considered. The most well-known control scheme where a dead time compensator is implemented is the Smith predictor, which, however, in its classical implementation, fails to provide a null steady-state error in the presence of a constant load disturbance if the process exhibits an integral dynamics. For this reason, mainly, different modifications of the classical Smith predictor have been proposed in the literature to overcome this drawback. These approaches will be reviewed and compared in this chapter.

Keywords

Transfer Function Dead Time Phase Margin Nominal Case Actuator Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 9.
    Åström, K.J., Hang, C.C., Lim, B.C.: A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans. Autom. Control 39, 343–345 (1994) CrossRefGoogle Scholar
  2. 13.
    Camacho, O., De la Cruz, F.: Smith predictor based-sliding mode controller for integrating processes with elevated deadtime. ISA Trans. 43, 257–270 (2004) CrossRefGoogle Scholar
  3. 16.
    Chien, I.-L., Peng, S.C., Liu, J.H.: Simple control method for integrating processes with long deadtime. J. Process Control 12, 391–404 (2002) CrossRefGoogle Scholar
  4. 22.
    Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Macmillan, New York (1992) Google Scholar
  5. 28.
    Guanghui, Z., Huihe, S.: A simple anti-windup compensation for modified Smith predictor. In: Proceedings American Control Conference, pp. 4859–4863, Minneapolis, Minnesota, 2006 Google Scholar
  6. 29.
    Guanghui, Z., Huihe, S.: Anti-windup design for the design for the controllers of integrating processes with long delay. J. Syst. Eng. Electron. 18(2), 297–303 (2007) CrossRefGoogle Scholar
  7. 30.
    Guanghui, Z., Feng, Q., Huihe, S.: Robust tuning method for modified Smith predictor. J. Syst. Eng. Electron. 18(1), 89–94 (2007) CrossRefGoogle Scholar
  8. 43.
    Ingimundarson, A., Hägglund, T.: Robust tuning procedures of dead-time compensating controllers. Control Eng. Pract. 9, 1195–1208 (2001) CrossRefGoogle Scholar
  9. 46.
    Kaya, I.: Controller design for integrating processes using user-specified gain and phase margin specifications and two degree-of-freedom IMC structure. In: Proceedings IEEE International Conference on Control Applications, pp. 898–902, Istanbul, Turkey, 2003 Google Scholar
  10. 48.
    Kaya, I.: Two-degree-of-freedom IMC structure and controller design for integrating processes based on gain and phase-margin specifications. IEE Proc., Control Theory Appl. 154(4), 481–487 (2004) CrossRefGoogle Scholar
  11. 60.
    Liu, T., Cai, Y.Z., Gu, D.Y., Zhang, W.D.: New modified Smith predictor scheme for integrating and unstable processes with time delay. IEE Proc., Control Theory Appl. 152(2), 238–246 (2005) CrossRefGoogle Scholar
  12. 61.
    Lu, X., Yang, Y.-S., Wang, Q.-G., Zheng, W.-X.: A double two-degree-of-freedom control scheme for improved control of unstable delay processes. J. Process Control 15, 605–614 (2005) CrossRefGoogle Scholar
  13. 62.
    Majhi, S., Atherton, D.P.: A new Smith predictor and controller for unstable and integrating processes with time delay. In: Proceedings IEEE International Conference on Decision and Control, pp. 1341–1345, Tampa, FL, 1998 Google Scholar
  14. 63.
    Majhi, S., Atherton, D.P.: Modified Smith predictor and controller for processes with time delay. IEE Proc., Control Theory Appl. 146(5), 359–366 (1999) CrossRefGoogle Scholar
  15. 64.
    Majhi, S., Atherton, D.P.: Automatic tuning of the modified Smith predictor controllers. In: Proceedings IEEE International Conference on Decision and Control, pp. 1116–1120, Sydney, AUS, 2000 Google Scholar
  16. 65.
    Majhi, S., Atherton, D.P.: Obtaining controller parameters for a new Smith predictor using autotuning. Automatica 36, 1651–1658 (2000) MathSciNetMATHCrossRefGoogle Scholar
  17. 69.
    Matausek, M.R., Micic, A.D.: A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans. Autom. Control 41(8), 1199–1202 (1996) MathSciNetMATHCrossRefGoogle Scholar
  18. 70.
    Matausek, M.R., Micic, A.D.: On the modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans. Autom. Control 44(8), 1603–1606 (1999) MathSciNetMATHCrossRefGoogle Scholar
  19. 76.
    Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Inc., Englewood Cliffs (1989) Google Scholar
  20. 78.
    Normey-Rico, J.E., Camacho, E.F.: Robust tuning of dead-time compensators for process with an integrator and long dead-time. IEEE Trans. Autom. Control 44(8), 1597–1603 (1999) MathSciNetMATHCrossRefGoogle Scholar
  21. 79.
    Normey-Rico, J.E., Camacho, E.F.: Smith predictor and modifications: a comparative study. In: Proceedings European Control Conference, Karlsruhe, Germany, 1999 Google Scholar
  22. 80.
    Normey-Rico, J.E., Camacho, E.F.: A unified approach to design dead-time compensators for stable and integrative processes with dead-time. IEEE Trans. Autom. Control 47(2), 299–305 (2002) MathSciNetCrossRefGoogle Scholar
  23. 106.
    Seshagiri Rao, A., Rao, V.S.R., Chidambaram, M.: Set point weighted modified Smith predictor for integrating and double integrating processes with time delay. ISA Trans. 46, 59–71 (2007) CrossRefGoogle Scholar
  24. 114.
    Smith, O.J.M.: Feedback Control Systems. McGraw-Hill, New York (1958) Google Scholar
  25. 120.
    Tian, Y.-C., Gao, F.: Control of integrator processes with dominant time delay. Ind. Eng. Chem. Res. 38, 2979–2983 (1999) CrossRefGoogle Scholar
  26. 145.
    Watanabe, K., Ito, M.: A process-model control for linear systems with delay. IEEE Trans. Autom. Control 26(6), 1261–1269 (1981) MATHCrossRefGoogle Scholar
  27. 152.
    Zhang, M., Jiang, C.: Problem and its solution for actuator saturation of integrating process with dead time. ISA Trans. 47, 80–84 (2008) MathSciNetCrossRefGoogle Scholar
  28. 153.
    Zhang, W., Sun, Y.X.: Modified Smith predictor for controlling integrator/time delay process. Ind. Eng. Chem. Res. 35, 2769–2772 (1996) CrossRefGoogle Scholar
  29. 155.
    Zhang, W., Rieber, J.M., Gu, D.: Optimal dead-time compensator design for stable and integrating processes with time delay. J. Process Control 18, 449–457 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

There are no affiliations available

Personalised recommendations