Advertisement

Disturbance Observer-based Control

  • Antonio Visioli
  • Qing-Chang Zhong
Part of the Advances in Industrial Control book series (AIC)

Abstract

In this chapter, it is revealed that a disturbance observer-based control scheme is very effective in controlling integral processes with dead time. The controller can be designed to reject ramp disturbances, step disturbances, and even arbitrary disturbances. Only two parameters are left to tune when the plant model is available. One is the time constant of the set-point response, and the other is the time constant of the disturbance response. The latter is tuned to compromise the disturbance response with robustness. This control scheme has a simple, clear, easy-to-design, and easy-to-implement structure.

Keywords

Dead Time Disturbance Observer Nominal Case Multiplicative Uncertainty Disturbance Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 12.
    Bodson, M.: Adaptive algorithm for the tuning of two input shaping methods. Automatica 34, 771–776 (1998) MATHCrossRefGoogle Scholar
  2. 23.
    Dym, H., Georgiou, T., Smith, M.C.: Explicit formulas for optimally robust controllers for delay systems. IEEE Trans. Autom. Control 40(4), 656–669 (1995) MathSciNetMATHCrossRefGoogle Scholar
  3. 24.
    Endo, S., Kobayashi, H., Kempf, C.J., Kobayashi, S., Tomizuka, M., Hori, Y.: Robust digital tracking controller design for high-speed positioning systems. Control Eng. Pract. 4(4), 527–536 (1996) CrossRefGoogle Scholar
  4. 36.
    Hong, K., Nam, K.: A load torque compensation scheme under the speed measurement delay. IEEE Trans. Ind. Electron. 45(2), 283–290 (1998) CrossRefGoogle Scholar
  5. 51.
    Kempf, C.J., Kobayashi, S.: Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans. Control Syst. Technol. 7(5), 513–526 (1999) CrossRefGoogle Scholar
  6. 58.
    Li, H.X., Van Den Bosch, P.P.J.: A robust disturbance-based control and its application. Int. J. Control 58(3), 537–554 (1993) MATHCrossRefGoogle Scholar
  7. 69.
    Matausek, M.R., Micic, A.D.: A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans. Autom. Control 41(8), 1199–1202 (1996) MathSciNetMATHCrossRefGoogle Scholar
  8. 71.
    Medvedev, A.: Disturbance attenuation in finite-spectrum-assignment. Automatica 33(6), 1163–1168 (1997) MathSciNetMATHCrossRefGoogle Scholar
  9. 76.
    Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Inc., Englewood Cliffs (1989) Google Scholar
  10. 77.
    Nobuyama, E., Shin, S., Kitamori, T.: Deadbeat control of continuous-time systems: MIMO case. In: Proceedings IEEE International Conference on Decision and Control, pp. 2110–2113, Kobe, Japan, 1996 Google Scholar
  11. 78.
    Normey-Rico, J.E., Camacho, E.F.: Robust tuning of dead-time compensators for process with an integrator and long dead-time. IEEE Trans. Autom. Control 44(8), 1597–1603 (1999) MathSciNetMATHCrossRefGoogle Scholar
  12. 85.
    Ohishi, K., Nakao, M., Ohnishi, K., Miyachi, K.: Microprocessor-controlled DC motor for load-insensitive position servo system. IEEE Trans. Ind. Electron. 34, 44–49 (1987) CrossRefGoogle Scholar
  13. 89.
    Palmor, Z.J.: Time-delay compensation—Smith predictor and its modifications. In: Levine, S. (ed.) The Control Handbook, pp. 224–237. CRC Press, Boca Raton (1996) Google Scholar
  14. 90.
    Pao, L.Y.: Multi-input shaping design for vibration reduction. Automatica 35(1), 81–89 (1999) MATHCrossRefGoogle Scholar
  15. 114.
    Smith, O.J.M.: Feedback Control Systems. McGraw-Hill, New York (1958) Google Scholar
  16. 121.
    Tsypkin, Y.Z.: Robust internal model control. ASME J. Dyn. Syst., Meas. Control 115(2B), 419–425 (1993) MATHCrossRefGoogle Scholar
  17. 123.
    Umeno, T., Hori, Y.: Robust speed control of dc servomotors using modern two degrees-of-freedom controller design. IEEE Trans. Ind. Electron. 38(5), 363–368 (1991) CrossRefGoogle Scholar
  18. 146.
    Watanabe, K., Nobuyama, E., Kojima, A.: Recent advances in control of time delay systems—a tutorial review. In: Proceedings IEEE International Conference on Decision and Control, pp. 2083–2089, Kobe, Japan, 1996 Google Scholar
  19. 156.
    Zhong, Q.-C.: Control of integral processes with dead-time. Part 3: Deadbeat disturbance response. IEEE Trans. Autom. Control 48(1), 153–159 (2003) CrossRefGoogle Scholar
  20. 157.
    Zhong, Q.-C.: Robust stability analysis of simple systems controlled over communication networks. Automatica 39(7), 1309–1312 (2003) MathSciNetMATHCrossRefGoogle Scholar
  21. 162.
    Zhong, Q.-C., Mirkin, L.: Control of integral processes with dead-time. Part 2: Quantitative analysis. IEE Proc., Control Theory Appl. 149(4), 291–296 (2002) CrossRefGoogle Scholar
  22. 163.
    Zhong, Q.-C., Normey-Rico, J.E.: Control of integral processes with dead-time. Part 1: Disturbance observer-based 2DOF control scheme. IEE Proc., Control Theory Appl. 149(4), 285–290 (2002) CrossRefGoogle Scholar
  23. 164.
    Zhong, Q.-C., Xie, J.Y., Jia, Q.: Time delay filter-based deadbeat control of process with dead time. Ind. Eng. Chem. Res. 39(6), 2024–2028 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

There are no affiliations available

Personalised recommendations