Advanced Control: The Augmented SDRE Technique

  • John Pittner
  • Marwan A. Simaan
Part of the Advances in Industrial Control book series (AIC)


This chapter introduces the augmented state-dependent Riccati equation (SDRE) technique for the advanced control of the tandem cold metal rolling process. The advantages of the SDRE method when compared to conventional control are presented. The characteristics of several other advanced control methods are included for evaluation in light of the augmented SDRE method. A brief introductory discussion on linear quadratic control concepts also is included as background in preparation for the presentation of the SDRE technique. The results of simulations using the augmented SDRE method as applied to typical tandem cold rolling applications show the effectiveness of this technique for control of the tandem cold rolling process.


Model Predictive Control Linear Quadratic Regulator Strip Thickness Backup Roll Adaptive Noise Cancelation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pearson JD. Approximation methods in optimal control. J Electron Control. 1962;13:453–69.Google Scholar
  2. 2.
    Wernli A, Cook G. Suboptimal control for the nonlinear quadratic regulator problem. Automatica. 1975;11:75–84.MATHCrossRefGoogle Scholar
  3. 3.
    Mracek CP, Cloutier JR. Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. Int J Robust Nonlinear Control. 1998;8:401–33.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Friedland B. Advanced control system design. Englewood Cliffs: Prentice-Hall; 1996.MATHGoogle Scholar
  5. 5.
    Parrish DK, Ridgely DB. Control of an artificial human pancreas using the SDRE method. In: Proceedings of American Control Conference, Albuquerque; 1997.Google Scholar
  6. 6.
    Cloutier JR, Stansbery DT. Nonlinear, hybrid bank-to-turn/skid-to-turn autopilot design. Proceedings of the AIAA Guidance, Navigation, and Control Conference; 2001; Montreal.Google Scholar
  7. 7.
    Cloutier JR, Zipfel PH. Hypersonic guidance via the state-dependent-Riccati equation control method. Proceedings of IEEE Conference of Control Applications; 1991; Hawaii.Google Scholar
  8. 8.
    Stansbery DT, Cloutier JR. Position and attitude control of a spacecraft using the state-dependent-Riccati equation technique. Proceedings of American Control Conference; 2000; Chicago.Google Scholar
  9. 9.
    Beeler SC, Kepler GM. Reduced order modeling and control of thin film growth in an HPCVD reactor. Control Research Computation Report CRSC-TR00-33. Raleigh: North Carolina State University; 2000.Google Scholar
  10. 10.
    Athans M, Falb PL. Optimal control an introduction to the theory and its applications. New York: McGraw-Hill; 1966.Google Scholar
  11. 11.
    Lewis FL. Optimal control. New York: Wiley; 1986.MATHGoogle Scholar
  12. 12.
    Cimen T. State-dependent Riccati equation (SDRE) control: a survey. In: Chung MJ, Misra P, editors. Plenary papers, milestone reports, and select survey papers. Seoul: 17th IFAC World Congress; 2008.Google Scholar
  13. 13.
    Erdem EB. Analysis and real-time implementation of state-dependent Riccati equation controlled systems, PhD thesis. Champaign: University of Illinois at Urbana-Champaign; 2001.Google Scholar
  14. 14.
    Hammet KD. Control of nonlinear systems via state feedback state-dependent Riccati equation techniques. PhD thesis, Air Force Institute of Technology, Ohio, 1997.Google Scholar
  15. 15.
    Coutier JR, D’Souza N, Mracek CP. Nonlinear regulation and nonlinear H control via the state-dependent Riccati equation technique: part 1, theory. Proceedings of International Conference on Nonlinear Problems in Aviation and Aerospace. Dayton Beach: Embry Riddle University; 1996; P. 117–31.Google Scholar
  16. 16.
    Vidyasagar M. Nonlinear systems analysis. Englewood Cliffs: Prentice-Hall; 1978.Google Scholar
  17. 17.
    Tsiotras P, Corless M, Rotea M. Counterexample to a recent result on the stability of nonlinear systems. IMA J Math Control Info. 1996;13(2):129–30.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Pittner J. Pointwise linear quadratic control of a tandem cold rolling mill, PhD thesis. Pittsburgh: University of Pittsburgh; 2006.Google Scholar
  19. 19.
    Pittner J, Simaan MA. Optimal control of tandem cold rolling using a pointwise linear quadratic technique with trims. J Dyn Syst-T ASME. 2008;130(2):021006-1–021006-11.Google Scholar
  20. 20.
    Kinney CS, Laub AJ. The matrix sign function. IEEE Trans Automat Control. 1995;40(8):1330–48.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kugi A, Haas W, Schlacher K, et al. Active compensation in rolling mills. IEEE Trans Ind Appl. 2000;36(2):625–32.CrossRefGoogle Scholar
  22. 22.
    Hayes MH. Statistical digital signal processing and modeling. New York: Wiley; 1996.Google Scholar
  23. 23.
    Widrow B, Streans S. Adaptive signal processing. Englewood Cliffs: Prentice-Hall; 1986.Google Scholar
  24. 24.
    Neumerkel D, Shorten R, Hambrecht A. Robust learning algorithms for nonlinear filtering. IEEE International Conference on Acoustics, Speech, Signal Processing. vol 6; Atlanta 1996; P. 3565–58.Google Scholar
  25. 25.
    Rawlings JB. Tutorial overview of model predictive control. IEEE Control Syst Mag. 2000;20(3):38–52.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Allgower F, Badgwell TA, Qin SJ, et al. Nonlinear predictive control and moving horizon estimation-an introductory overview. In: Frank PM, editor. Advances in control: highlights of ECC99. London: Springer; 1999.Google Scholar
  27. 27.
    Edwards E, Spurgeon SK. Sliding mode control theory and applications. London: Taylor & Francis; 1998.Google Scholar
  28. 28.
    Slotine JJE, Li W. Applied nonlinear control. Englewood Cliffs: Prentice-Hall; 1991.MATHGoogle Scholar
  29. 29.
    Pittner J, Simaan MA. Optimum feedback controller design for tandem cold metal rolling. Proceedings of IFAC 17th World Congress; 2008; Seoul, P. 988–93.Google Scholar
  30. 30.
    Pittner J, Simaan MA. Optimal control of continuous tandem cold metal rolling. In: Proceedings of American Control Conference; 2008; Seattle, P. 2018–23.Google Scholar
  31. 31.
    Pittner J, Simaan MA. Control of a continuous tandem cold rolling process. Control Eng Pract. 2008;16(11):1379–90.CrossRefGoogle Scholar
  32. 32.
    Pittner J, Samaras NS, Simaan MA. A new strategy for optimal control of continuous tandem cold metal rolling. IEEE Trans Ind Appl. 2010;46(2):703–11.CrossRefGoogle Scholar
  33. 33.
    Roberts WL. Cold rolling of steel. New York: Marcel Dekker; 1978.Google Scholar
  34. 34.
    Ginzburg V, Ballas R. Roll eccentricity. United Engineering. Pittsburgh: International Rolling Mill Consultants. Pittsburgh; 1998.Google Scholar
  35. 35.
    Tezuka T, Yamashita T, Sato T, et al. Application of a new automatic gauge control system for the tandem cold mill. IEEE Trans Ind Appl. 2002;38(2):553–8.CrossRefGoogle Scholar
  36. 36.
    Sekiguchi K, Seki Y, Okitani N, et al. The advanced set-up and control system for Dofasco’s tandem cold mill. IEEE Trans Ind Appl. 1996;32(3):608–616.CrossRefGoogle Scholar
  37. 37.
    Khalil HK. Nonlinear systems. New York: Macmillan; 1992.MATHGoogle Scholar
  38. 38.
    Zhou K, Doyle JC. Essentials of robust control. Upper Saddle River: Prentice-Hall; 1998.Google Scholar
  39. 39.
    Vetter W. Derivative operations on matrices. IEEE Trans Automat Control. 1970;15(2):241–4.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Dept. Electrical & Computer EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Electrical Engineering & Computer ScienceUniversity of Central FloridaOrlandoUSA

Personalised recommendations