Advanced Control

  • John Pittner
  • Marwan A. Simaan
Part of the Advances in Industrial Control book series (AIC)


This chapter describes some techniques for the advanced control of the tandem cold metal rolling process, and compares them to conventional control methods. The strengths and weaknesses of each of the advanced methods is addressed. In preparation for the discussion on advanced control, the need for advanced control of the process is presented and the linearization of the process model is addressed.


MIMO System Identity Observer Loop Shaping Conventional Controller SISO System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kuo BC. Automatic control systems. Englewood Cliffs: Prentice-Hall; 1991.Google Scholar
  2. 2.
    Buckley PS. Techniques of process control. New York: Wiley; 1964.Google Scholar
  3. 3.
    Vajta M. Some remarks on Pade approximations. Proceedings of the 3rd TEMPUS-INTCOM Symposium; 2000; Veszprem.Google Scholar
  4. 4.
    Yoon MG, Lee BH. A new approximation method for time delay systems. IEEE Trans Automat Control. 1997;42(7):1008–12.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    DeCarlo RA. Linear systems, state-space methods. Englewood Cliffs: Prentice-Hall; 1989.Google Scholar
  6. 6.
    McFarlane D, Glover K. A loop shaping design procedure using H synthesis. IEEE Trans Automat Control. 1992;37(6):759–69.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bode HW. Network analysis and feedback amplifier design. New York: Van Nostrand; 1945.Google Scholar
  8. 8.
    Horowitz JM. Synthesis of feedback systems. New York: Academic Press; 1963.MATHGoogle Scholar
  9. 9.
    Hyde RA, Glover K. The application of scheduled H controllers to a VSTOL aircraft. IEEE Trans Automat Control. 1993;38(7):1021–39.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Panesi R. H loop shaping control of aerospace systems, PhD thesis. Pisa: University di Pisa; 2008.Google Scholar
  11. 11.
    Geddes EJM. Tandem cold rolling and robust multivariable control, PhD thesis. Leicester: University of Leicester; 1998.Google Scholar
  12. 12.
    Geddes EJM, Postlewaite I. Improvements in product quality in tandem cold rolling using robust multivariable control. IEEE Trans Control Syst. Technol. 1998;6(2):257–69.CrossRefGoogle Scholar
  13. 13.
    Maciejowski JM. Multivariable feedback design. Wokingham: Addison-Wesley; 1989.MATHGoogle Scholar
  14. 14.
    Luenberger DG. Introduction to dynamic systems. New York: Wiley; 1979.MATHGoogle Scholar
  15. 15.
    Francis BA, Wonham W. The internal model principle of control theory. Automatica. 1976;12:457–65.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hoshino I, Maekawa Y, Fujimoto T, et al. Observer-based multivariable control of the aluminum cold tandem mill. Automatica. 1988;24(6):741–54.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Corriou JP. Process control, theory and applications. London: Springer; 2004.Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Dept. Electrical & Computer EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Electrical Engineering & Computer ScienceUniversity of Central FloridaOrlandoUSA

Personalised recommendations