Advertisement

Energy Aware Clouds

  • Anne-Cécile Orgerie
  • Marcos Dias de Assunção
  • Laurent Lefèvre
Part of the Computer Communications and Networks book series (CCN)

Abstract

Cloud infrastructures are increasingly becoming essential components for providing Internet services. By benefiting from economies of scale, Clouds can efficiently manage and offer a virtually unlimited number of resources and can minimize the costs incurred by organizations when providing Internet services. However, as Cloud providers often rely on large data centres to sustain their business and offer the resources that users need, the energy consumed by Cloud infrastructures has become a key environmental and economical concern. This chapter presents an overview of techniques that can improve the energy efficiency of Cloud infrastructures. We propose a framework termed as Green Open Cloud, which uses energy efficient solutions for virtualized environments; the framework is validated on a reference scenario.

Keywords

Virtual Machine Cloud Provider Cloud Resource Cloud Infrastructure Resource Management System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Make it green—cloud computing and its contribution to climate change. Greenpeace international (2010) Google Scholar
  3. 3.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pp. 164–177. ACM, New York (2003). doi: 10.1145/945445.945462 CrossRefGoogle Scholar
  4. 4.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice-Hall International, New York (1994) MATHGoogle Scholar
  5. 5.
    Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing energy and server resources in hosting centers. In: 18th ACM Symposium on Operating Systems Principles (SOSP ’01), pp. 103–116. ACM, Banff (2001) CrossRefGoogle Scholar
  6. 6.
    Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: NSDI’05: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, Berkeley, CA, USA, pp. 273–286 (2005) Google Scholar
  7. 7.
    Da-Costa, G., Gelas, J.P., Georgiou, Y., Lefèvre, L., Orgerie, A.C., Pierson, J.M., Richard, O., Sharma, K.: The green-net framework: energy efficiency in large scale distributed systems. In: HPPAC 2009: High Performance Power Aware Computing Workshop in Conjunction with IPDPS 2009, Roma, Italy (2009) Google Scholar
  8. 8.
    Doyle, R.P., Chase, J.S., Asad, O.M., Jin, W., Vahdat, A.M.: Model-based resource provisioning in a Web service utility. In: 4th Conference on USENIX Symposium on Internet Technologies and Systems (USITS’03), p. 5. USENIX Association, Berkeley (2003) Google Scholar
  9. 9.
    Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized computer. In: ISCA ’07: Proceedings of the 34th Annual International Symposium on Computer Architecture, New York, NY, USA, pp. 13–23 (2007). doi: 10.1145/1250662.1250665
  10. 10.
    Fontán, J., Vázquez, T., Gonzalez, L., Montero, R.S., Llorente, I.M.: OpenNEbula: the open source virtual machine manager for cluster computing. In: Open Source Grid and Cluster Software Conference—Book of Abstracts, San Francisco, USA (2008) Google Scholar
  11. 11.
    Hamm, S.: With Sun, IBM Aims for Cloud Computing Heights (26 March 2009). URL http://www.businessweek.com/magazine/content/09_14/b4125034196164.htm?chan=magazine+channel_news
  12. 12.
    Harizopoulos, S., Shah, M.A., Meza, J., Ranganathan, P.: Energy efficiency: the new holy grail of data management systems research. In: Fourth Biennial Conference on Innovative Data Systems Research (CIDR) (2009). URL http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_112.pdf
  13. 13.
    Hirofuchi, T., Nakada, H., Ogawa, H., Itoh, S., Sekiguchi, S.: A live storage migration mechanism over wan and its performance evaluation. In: VTDC ’09: Proceedings of the 3rd International Workshop on Virtualization Technologies in Distributed Computing, pp. 67–74. ACM, New York (2009). doi: 10.1145/1555336.1555348 CrossRefGoogle Scholar
  14. 14.
    Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., Takahashi, D.: Profile-based optimization of power performance by using dynamic voltage scaling on a PC cluster. In: IPDPS (2006). doi: 10.1109/IPDPS.2006.1639597
  15. 15.
    Iosup, A., Dumitrescu, C., Epema, D., Li, H., Wolters, L.: How are real grids used? the analysis of four grid traces and its implications. In: 7th IEEE/ACM International Conference on Grid Computing (2006) Google Scholar
  16. 16.
    Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: A cost-sensitive adaptation engine for server consolidation of multitier applications. In: 10th ACM/IFIP/USENIX International Conference on Middleware (Middleware 2009), pp. 1–20. Springer, New York (2009) Google Scholar
  17. 17.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng. 82(Series D), 35–45 (1960) CrossRefGoogle Scholar
  18. 18.
    Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured CPU resource provisioning for virtualized servers using Kalman filters. In: 6th International Conference on Autonomic Computing (ICAC 2009), pp. 117–126. ACM, New York (2009). doi: 10.1145/1555228.1555261 Google Scholar
  19. 19.
    Kim, M., Noble, B.: Mobile network estimation. In: 7th Annual International Conference on Mobile Computing and Networking (MobiCom 2001), pp. 298–309. ACM, New York (2001). doi: 10.1145/381677.381705 CrossRefGoogle Scholar
  20. 20.
    Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and performance management of virtualized computing environments via lookahead control. In: 5th International Conference on Autonomic Computing (ICAC 2008), pp. 3–12. IEEE Computer Society, Washington (2008). doi: 10.1109/ICAC.2008.31 CrossRefGoogle Scholar
  21. 21.
    Lefèvre, L., Orgerie, A.C.: Designing and evaluating an energy efficient cloud. J. Supercomput. 51(3), 352–373 (2010) CrossRefGoogle Scholar
  22. 22.
    Liu, J., Zhao, F., Liu, X., He, W.: Challenges towards elastic power management in Internet data centers. In: 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW 2009), pp. 65–72. IEEE Computer Society, Washington (2009). doi: 10.1109/ICDCSW.2009.44 CrossRefGoogle Scholar
  23. 23.
    Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., Rajkumar, R.: Critical power slope: understanding the runtime effects of frequency scaling. In: ICS’02: Proceedings of the 16th International Conference on Supercomputing, pp. 35–44. ACM, New York (2002). doi: 10.1145/514191.514200 CrossRefGoogle Scholar
  24. 24.
    Moore, J., Chase, J., Ranganathan, P., Sharma, R.: Making scheduling “cool”: temperature-aware workload placement in data centers. In: USENIX Annual Technical Conference (ATEC 2005), pp. 5–5. USENIX Association, Berkeley (2005) Google Scholar
  25. 25.
    Nathuji, R., Schwan, K.: VirtualPower: Coordinated power management in virtualized enterprise systems. In: 21st ACM SIGOPS Symposium on Operating Systems Principles (SOSP 2007), pp. 265–278. ACM, New York (2007). doi: 10.1145/1294261.1294287 CrossRefGoogle Scholar
  26. 26.
    Nurmi, D., Wolski, R., Crzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: Eucalyptus: a technical report on an elastic utility computing architecture linking your programs to useful systems. Technical report 2008-10, Department of Computer Science, University of California, Santa Barbara, California, USA (2008) Google Scholar
  27. 27.
    Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Chasing gaps between bursts: towards energy efficient large scale experimental grids. In: PDCAT 2008: The Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 381–389. Dunedin, New Zealand (2008) Google Scholar
  28. 28.
    Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Save watts in your grid: green strategies for energy-aware framework in large scale distributed systems. In: 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, Australia, pp. 171–178 (2008) Google Scholar
  29. 29.
    Patterson, M., Costello, D., Grimm, P., Loeffler, M.: Data center TCO: a comparison of high-density and low-density spaces. In: Thermal Challenges in Next Generation Electronic Systems (THERMES 2007) (2007). URL http://isdlibrary.intel-dispatch.com/isd/114/datacenterTCO_WP.pdf
  30. 30.
    Sharma, R., Bash, C., Patel, C., Friedrich, R., Chase, J.: Balance of power: dynamic thermal management for internet data centers. IEEE Internet Comput. 9(1), 42–49 (2005). doi: 10.1109/MIC.2005.10 CrossRefGoogle Scholar
  31. 31.
    Silicon Valley Leadership Group: Data center energy forecast. White Paper (2008). URL svlg.org/campaigns/datacenter/docs/DCEFR_report.pdf
  32. 32.
    Singh, T., Vara, P.K.: Smart metering the clouds. In: IEEE International Workshop on Enabling Technologies, pp. 66–71 (2009). doi: 10.1109/WETICE.2009.49
  33. 33.
    Snowdon, D.C., Ruocco, S., Heiser, G.: Power management and dynamic voltage scaling: myths and facts. In: Proceedings of the 2005 Workshop on Power Aware Real-time Computing (2005) Google Scholar
  34. 34.
    Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of HotPower ’08 Workshop on Power Aware Computing and Systems (2008). URL http://www.usenix.org/events/hotpower08/tech/full_papers/srikantaiah/srikantaiah/_html/
  35. 35.
    Subramanyam, S., Smith, R., van den Bogaard, P., Zhang, A.: Deploying Web 2.0 applications on Sun servers and the OpenSolaris operating system. Sun BluePrints 820-7729-10, Sun Microsystems (2009) Google Scholar
  36. 36.
    Talaber, R., Brey, T., Lamers, L.: Using Virtualization to Improve Data Center Efficiency. Tech. rep., The Green Grid (2009) Google Scholar
  37. 37.
    Tatezono, M., Maruyama, N., Matsuoka, S.: Making wide-area, multi-site MPI feasible using Xen VM. In: Workshop on Frontiers of High Performance Computing and Networking (held with ISPA 2006). LNCS, vol. 4331, pp. 387–396. Springer, Berlin (2006) CrossRefGoogle Scholar
  38. 38.
    Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat, C., Mambretti, J., Monga, I., van Oudenaarde, B., Raghunath, S., Wang, P.Y.: Seamless live migration of virtual machines over the MAN/WAN. Future Gener. Comput. Syst. 22(8), 901–907 (2006). doi: 10.1016/j.future.2006.03.007 CrossRefGoogle Scholar
  39. 39.
    Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provisioning of multi-tier internet applications. ACM Trans. Auton. Adapt. Syst. 3(1), 1–39 (2008). doi: 10.1145/1342171.1342172 CrossRefGoogle Scholar
  40. 40.
    Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. In: ACM/IFIP/USENIX 9th International Middleware Conference (Middleware 2008), pp. 243–264. Springer, Berlin (2008). doi: 10.1007/978-3-540-89856-6_13 Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Anne-Cécile Orgerie
    • 1
  • Marcos Dias de Assunção
    • 2
  • Laurent Lefèvre
    • 2
  1. 1.ENS Lyon, LIP Laboratory (UMR CNRS, INRIA, ENS, UCB)University of LyonLyon Cedex 07France
  2. 2.INRIA, LIP Laboratory (UMR CNRS, INRIA, ENS, UCB)University of LyonLyon Cedex 07France

Personalised recommendations