Architectures for Enhancing Grid Infrastructures with Cloud Computing

  • Eduardo Huedo
  • Rafael Moreno-Vozmediano
  • Rubén S. Montero
  • Ignacio M. Llorente
Part of the Computer Communications and Networks book series (CCN)


Grid and Cloud Computing models pursue the same objective of constructing large-scale distributed infrastructures, although focusing on complementary aspects. While grid focuses on federating resources and fostering collaboration, cloud focuses on flexibility and on-demand provisioning of virtualized resources. Due to their complementarity, it is clear that both models, or at least some of their concepts and techniques, will coexist and cooperate in existing and future e-infrastructures. This chapter shows how Cloud Computing will help both to overcome many of the barriers to grid adoption and to enhance the management, functionality, suitability, energy efficiency, and utilization of production grid infrastructures.


Cloud Computing Virtual Machine Cloud Provider Grid Resource Cloud Resource 



This research was supported by Consejería de Educación de la Comunidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and Fondo Social Europeo (FSE), through MEDIANET Research Program S2009/TIC-1468, by Ministerio de Ciencia e Innovación, through the research grant TIN2009-07146, and by the European Union through the StratusLab contract number RI-261552.


  1. 1.
    Adabala, S., Chadha, V., Chawla, P., et al.: From virtualized resources to virtual computing grids: the In-VIGO system. Future Gener. Comput. Syst. 21(6), 896–909 (2005) CrossRefGoogle Scholar
  2. 2.
    Begin, M.: An EGEE comparative study: grids and clouds—evolution or revolution. Tech. rep., EGEE-III NA1 (2008). Available at
  3. 3.
    Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q., Pentikousis, K.: Energy-efficient cloud computing. Comput. J. 53(7), 1045–1051 (2010) CrossRefGoogle Scholar
  4. 4.
    Blanco, C.V., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic provision of computing resources from grid infrastructures and cloud providers. In: Proceedings of the Workshop on Grids, Clouds and Virtualization, in Conjunction with Grid and Pervasive Computing Conference (GPC 2009), pp. 113–120. IEEE Computer Society, Los Alamitos (2009) Google Scholar
  5. 5.
    Buyya, R., Murshed, M.M., Abramson, D., Venugopal, S.: Scheduling parameter sweep applications on global Grids: a deadline and budget constrained cost-time optimization algorithm. Softw. Pract. Exp. 35(5), 491–512 (2005) CrossRefGoogle Scholar
  6. 6.
    Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a grid site manager. In: Proceedings of the 12th International Symposium on High Performance Distributed Computing (HPDC 2003) (2003) Google Scholar
  7. 7.
    di Costanzo, A., de Assuncao, M., Buyya, R.: Harnessing cloud technologies for a virtualized distributed computing infrastructure. IEEE Internet Comput. 13(5), 24–33 (2009) CrossRefGoogle Scholar
  8. 8.
    Emeneker, W., Jackson, D., Butikofer, J., Stanzione, D.: Dynamic virtual clustering with Xen and Moab. In: Proceedings of the Frontiers of High Performance Computing and Networking, ISPA 2006 Workshops. Lecture Notes in Computer Science, vol. 4331, pp. 440–451. Springer, Berlin (2006) CrossRefGoogle Scholar
  9. 9.
    Emeneker, W., Stanzione, D.: Dynamic virtual clustering. IEEE Cluster (2007) Google Scholar
  10. 10.
    Fallenbeck, N., Picht, H., Smith, M., Freisleben, B.: Xen and the art of cluster scheduling. In: Proceedings of the 1st International Workshop on Virtualization Technology in Distributed Computing (VTDC 2006) (2006) Google Scholar
  11. 11.
    Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clusters for grid communities. In: Proceedings of the 6th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2006) (2006) Google Scholar
  12. 12.
    Gilbert, L., Tseng, J., Newman, R., Iqbal, S., Pepper, R., Celebioglu, O., Hsieh, J., Mashayekhi, V., Cobban, M.: Implications of virtualization on grids for high energy physics applications. J. Parallel Distrib. Comput. 66(7), 922–930 (2006) CrossRefGoogle Scholar
  13. 13.
    Huedo, E., Montero, R.S., Llorente, I.M.: The GridWay framework for adaptive scheduling and execution on grids. Scalable Comput. Pract. Exp. 6, 1–8 (2005) Google Scholar
  14. 14.
    Huedo, E., Montero, R.S., Llorente, I.M.: A modular meta-scheduling architecture for interfacing with pre-WS and WS grid resource management services. Future Gener. Comput. Syst. 23(2), 252–261 (2007) CrossRefGoogle Scholar
  15. 15.
    Krsul, I., Ganguly, A., Zhang, J., Fortes, J.A.B., Figueiredo, R.J.: VM-Plants: Providing and managing virtual machine execution environments for grid computing. In: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing (2004) Google Scholar
  16. 16.
    Llorente, I.M., Moreno-Vozmediano, R., Montero, R.S.: Cloud computing for on-demand grid resource provisioning. In: Proceedings of the High Performance Computing Workshop 2008, High Speed and Large Scale Scientific Computing. Advances in Parallel Computing, vol. 18, pp. 177–191. IOS, Amsterdam (2009) Google Scholar
  17. 17.
    Llorente, I.M., Newhouse, S.: Collaboration between the EGEE and RESERVOIR projects. In: EGEE 2009 Conference (2009) Google Scholar
  18. 18.
    Loomis, C.: StratusLab—enhancing grid infrastructures with cloud computing. In: EGEE 2009 Conference (2009) Google Scholar
  19. 19.
    Loomis, C., Begin, M., Floros, V., Llorente, I.M., Montero, R.S.: Operating a grid site in the cloud. In: 4th EGEE User Forum/OGF 25 and OGF Europe’s 2nd International Event (2009) Google Scholar
  20. 20.
    Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Elastic management of cluster-based services in the cloud. In: Proceedings of the 1st Workshop on Automated Control for Datacenters and Clouds (ACDC 2009), in Conjunction with 6th International Conference on Autonomic Computing and Communications (ICAC 2009), pp. 19–24. ACM, New York (2009) Google Scholar
  21. 21.
    Murphy, M., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of virtual organization clusters. In: Proceedings of the 9th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2009) (2009) Google Scholar
  22. 22.
    Nilsson, P.: Experience from a pilot based system for ATLAS. J. Phys. Conf. Ser. 119(6), 062038 (2008) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nishimura, H., Maruyama, N., Matsuoka, S.: Virtual clusters on the fly—fast, scalable, and flexible installation. In: Proceedings of the 7th IEEE International Symposium on Cluster Computing and the Grid (CCGRID 2007) (2007) Google Scholar
  24. 24.
    Riedel, M., Laure, E., et al.: Interoperation of world-wide production e-Science infrastructures. Concurr. Comput. Pract. Exp. 21(8), 961–990 (2009) CrossRefGoogle Scholar
  25. 25.
    Rodriguez, M., Tapiador, D., Fontan, J., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic provisioning of virtual clusters for grid computing. In: Proceedings of the 3rd Workshop on Virtualization in High-Performance Cluster and Grid Computing (VHPC 2008), in Conjunction with Euro-Par 2008. Lecture Notes in Computer Science, vol. 5415, pp. 23–32. Springer, Berlin (2009) Google Scholar
  26. 26.
    Rubio-Montero, A., Huedo, E., Montero, R., Llorente, I.: Management of virtual machines on Globus Grids using GridWay. In: High Performance Grid Computing Workshop (HPGC 2007), in Conjunction with 21th International Parallel and Distributed Processing Symposium (IPDPS 2007), pp. 1–7 (2007) Google Scholar
  27. 27.
    Ruth, P., McGachey, P., Xu, D.: Viocluster: virtualization for dynamic computational domains. In: 2005 IEEE International Conference on Cluster Computing (2005) Google Scholar
  28. 28.
    Sfiligoi, I.: glideinWMS—a generic pilot-based workload management system. J. Phys. Conf. Ser. 119(6), 062,044 (2008) Google Scholar
  29. 29.
    Teragrid User Support: Managing Your Software Environment. Available at Accessed April 2010
  30. 30.
    Tsaregorodtsev, A., Garonne, V., Stokes-Rees, I.: DIRAC: a scalable lightweight architecture for high throughput computing. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing (GRID’04), pp. 19–25 (2004) Google Scholar
  31. 31.
    Walker, E., Gardner, J.P., Litvin, V., Turner, E.: Creating personal adaptive clusters for managing scientific jobs in a distributed computing environment. In: Proceedings of the IEEE Workshop on Challenges of Large Applications in Distributed Environments (CLADE 2006) (2006) Google Scholar
  32. 32.
    Youseff, L., Seymour, K., You, H., Dongarra, J., Wolski, R.: The impact of paravirtualized memory hierarchy on linear algebra computational kernels and software. In: Proceedings of the High Performance Distributed Computing (HPDC) (2008) Google Scholar
  33. 33.
    Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization for HPC systems. In: Proceedings of the Workshop on XEN in HPC Cluster and Grid Computing Environments (XHPC), in Conjunction with International Symposium on Parallel and Distributed Processing and Application (ISPA 2006) (2006) Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Eduardo Huedo
    • 1
  • Rafael Moreno-Vozmediano
    • 1
  • Rubén S. Montero
    • 1
  • Ignacio M. Llorente
    • 1
  1. 1.Universidad Complutense de MadridMadridSpain

Personalised recommendations