Grids, Clouds, and Virtualization

Part of the Computer Communications and Networks book series (CCN)


This chapter introduces and puts in context Grids, Clouds, and Virtualization. Grids promised to deliver computing power on demand. However, despite a decade of active research, no viable commercial grid computing provider has emerged. On the other hand, it is widely believed—especially in the Business World—that HPC will eventually become a commodity. Just as some commercial consumers of electricity have mission requirements that necessitate they generate their own power, some consumers of computational resources will continue to need to provision their own supercomputers. Clouds are a recent business-oriented development with the potential to render this eventually as rare as organizations that generate their own electricity today, even among institutions who currently consider themselves the unassailable elite of the HPC business. Finally, Virtualization is one of the key technologies enabling many different Clouds. We begin with a brief history in order to put them in context, and recall the basic principles and concepts underlying and clearly differentiating them. A thorough overview and survey of existing technologies provides the basis to delve into details as the reader progresses through the book.


Cloud Computing Virtual Machine Grid Computing Cloud Computing Environment Virtualization Technology 



The authors with to thank Martin Walker for the insightful discussions on grids and clouds in the context of the SEPAC grid project; part of the materials of this chapter are based on one of his many interesting presentations.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    Abramson, D., Buyya, R., Giddy, J.: A computational economy for grid computing and its implementation in the Nimrod-G resource broker. Future Gener. Comput. Syst. 18(8), 1061–1074 (2002). doi: 10.1016/S0167-739X(02)00085-7 MATHCrossRefGoogle Scholar
  11. 11.
    Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002). doi: 10.1145/581571.581573 CrossRefGoogle Scholar
  12. 12.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California, Berkeley (2009). URL
  13. 13.
    Beberg, A.L., Ensign, D.L., Jayachandran, G., Khaliq, S., Pande, V.S.: Folding@home: Lessons from eight years of volunteer distributed computing. In: IPDPS ’09: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, pp. 1–8. IEEE Computer Society, Washington (2009). doi: 10.1109/IPDPS.2009.5160922 Google Scholar
  14. 14.
    Benger, W., Foster, I.T., Novotny, J., Seidel, E., Shalf, J., Smith, W., Walker, P.: Numerical relativity in a distributed environment. In: Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing. SIAM, Philadelphia (1999) Google Scholar
  15. 15.
    Boardman, R., Crouch, S., Mills, H., Newhouse, S., Papay, J.: Towards grid interoperability. In: All Hands Meeting 2007, OMII-UK Workshop (2007) Google Scholar
  16. 16.
    Brunett, S., Davis, D., Gottschalk, T., Messina, P., Kesselman, C.: Implementing distributed synthetic forces simulations in metacomputing environments. In: HCW ’98: Proceedings of the Seventh Heterogeneous Computing Workshop, p. 29. IEEE Computer Society, Los Alamitos (1998) CrossRefGoogle Scholar
  17. 17.
    Cafaro, M., Aloisio, G. (eds.): Grids, Clouds and Virtualization. Springer, Berlin (2010) Google Scholar
  18. 18.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008). doi: 10.1145/1327452.1327492 CrossRefGoogle Scholar
  19. 19.
    Defanti, T., Foster, I., Papka, M.E., Kuhfuss, T., Stevens, R., Stevens, R.: Overview of the I-EWAY: wide area visual supercomputing. Int. J. Supercomput. Appl. 10(2), 123–130 (1996) CrossRefGoogle Scholar
  20. 20.
    Dimitrakos Theoand Martrat, J., Wesner, S. (eds.): Service Oriented Infrastructures and Cloud Service Platforms for the Enterprise—A Selection of Common Capabilities Validated in Real-Life Business Trials by the BEinGRID Consortium. Springer, Berlin (2010) Google Scholar
  21. 21.
    Erwin, D.W., Snelling, D.F.: Unicore: a grid computing environment. In: Euro-Par ’01: Proceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing, pp. 825–834. Springer, London (2001) Google Scholar
  22. 22.
    Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific HPC applications: feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. In: Cloud Computing and Its Applications (2008) Google Scholar
  23. 23.
    Foster, I.: What is the grid? A three point checklist (2002). URL (unpublished)
  24. 24.
    Foster, I.: Globus toolkit version 4: Software for service-oriented systems. In: IFIP International Conference on Network and Parallel Computing. LNCS, vol. 3779, pp. 2–13. Springer, Berlin (2005) Google Scholar
  25. 25.
    Foster, I., Geisler, J., Nickless, B., Smith, W., Tuecke, S.: Software infrastructure for the I-WAY high-performance distributed computing experiment. In: Proceedings of the 5th IEEE Symposium on High Performance Distributed Computing, pp. 562–571. Society Press (1996) Google Scholar
  26. 26.
    Foster, I., Kesselman, C.: The Globus project: a status report. Future Gener. Comput. Syst. 15(56), 607–621 (1999). doi: 10.1016/S0167-739X(99)00013-8 CrossRefGoogle Scholar
  27. 27.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid—enabling scalable virtual organizations. Int. J. Supercomput. Appl. 15, 2001 (2001) CrossRefGoogle Scholar
  28. 28.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, GCE ’08, pp. 1–10 (2008). doi: 10.1109/GCE.2008.4738445
  29. 29.
    Fox, G.C., Pierce, M.: Grids meet too much computing: too much data and never too much simplicity (2007). URL (unpublished)
  30. 30.
    Gentzsch, W.: Sun grid engine: towards creating a compute power grid. In: CCGRID ’01: Proceedings of the 1st International Symposium on Cluster Computing and the Grid, p. 35. IEEE Computer Society, Washington (2001) CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Gray, J.: Distributed computing economics. Queue 6(3), 63–68 (2008). doi: 10.1145/1394127.1394131 CrossRefGoogle Scholar
  33. 33.
    Grimshaw, A.S., Wulf, W.A., The Legion Team, C.: The legion vision of a worldwide virtual computer. Commun. ACM 40(1), 39–45 (1997). doi: 10.1145/242857.242867 CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Hajdu, L., Kocoloski, A., Lauret, J., Miller, M.: Integrating Xgrid into the HENP distributed computing model. J. Phys. Conf. Ser. 119 (2008). doi: 10.1088/1742-6596/119/7/072018
  36. 36.
    Hughes, B.: Building computational grids with Apple’s Xgrid middleware. In: ACSW Frontiers ’06: Proceedings of the 2006 Australasian Workshops on Grid Computing and e-Research, pp. 47–54. Australian Computer Society, Darlinghurst (2006) Google Scholar
  37. 37.
    Kesselman, C., Foster, I.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Mateo (1998) Google Scholar
  38. 38.
    Lakshmi, J., Nandy, S.K.: Quality of service for I/O workloads in multicore virtualized servers. In: Cafaro, M., Aloisio, G. (eds.) Grids, Clouds and Virtualization. Springer, Berlin (2010) Google Scholar
  39. 39.
    Laszewski, G.V., Insley, J.A., Foster, I., Bresnahan, J., Kesselman, C., Su, M., Thiebaux, M., Rivers, M.L., Wang, S., Tieman, B., Mcnulty, I.: Real-time analysis, visualization, and steering of microtomography experiments at photon sources. In: Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, pp. 22–24. SIAM, Philadelphia (1999) Google Scholar
  40. 40.
    Laure, E., Fisher, S.M., Frohner, A., Grandi, C., Kunszt, P.Z., Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J., Barroso, M., Buncic, P., Hemmer, F., Di Meglio, A., Edlund, A.: Programming the Grid using gLite. Tech. Rep. EGEE-PUB-2006-029 (2006) Google Scholar
  41. 41.
    Laure, E., Jones, B.: Enabling grids for e-Science: the EGEE project. Tech. Rep. EGEE-PUB-2009-001. 1 (2008) Google Scholar
  42. 42.
    Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Karger, D.R., Morris, R.: On the feasibility of peer-to-peer web indexing and search. In: IPTPS, pp. 207–215 (2003) Google Scholar
  43. 43.
    Matsuoka, S., Shinjo, S., Aoyagi, M., Sekiguchi, S., Usami, H., Miura, K.: Japanese computational grid research project: Naregi. Proc. IEEE 93(3), 522–533 (2005) CrossRefGoogle Scholar
  44. 44.
    Mersenne Research, I.: URL
  45. 45.
    Nanda, S., Cker Chiueh, T.: A survey of virtualization technologies. Tech. rep., State University of New York at Stony Brook (2005) Google Scholar
  46. 46.
    Nanda, S., Li, W., Lam, L.C., Chiueh, T.C.: Bird: binary interpretation using runtime disassembly. In: CGO ’06: Proceedings of the International Symposium on Code Generation and Optimization, pp. 358–370. IEEE Computer Society, Washington (2006). doi: 10.1109/CGO.2006.6 CrossRefGoogle Scholar
  47. 47.
    Perryman, A.L., Zhang, Q., Soutter, H.H., Rosenfeld, R., McRee, D.E., Olson, A.J., Elder, J.E., Stout, C.D.: Fragment-based screen against HIV protease. Chem. Biol. Drug Des. 75(3), 257–268 (2010). doi: 10.1111/j.1747-0285.2009.00943.x CrossRefGoogle Scholar
  48. 48.
  49. 49.
  50. 50.
    Smarr, L., Catlett, C.E.: Metacomputing. Commun. ACM 35(6), 44–52 (1992). doi: 10.1145/129888.129890 CrossRefGoogle Scholar
  51. 51.
    Smith, W., Foster, I.T., Taylor, V.E.: Predicting application run times using historical information. In: IPPS/SPDP ’98: Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, pp. 122–142. Springer, London (1998) CrossRefGoogle Scholar
  52. 52.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurr. Pract. Exp. 17(2–4), 323–356 (2005) CrossRefGoogle Scholar
  53. 53.
    Wang, L., Zhan, J., Shi, W., Liang, Y., Yuan, L.: In cloud, do MTC or HTC service providers benefit from the economies of scale? In: MTAGS ’09: Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers, pp. 1–10. ACM, New York (2009). doi: 10.1145/1646468.1646475 CrossRefGoogle Scholar
  54. 54.
    Weiss, A.: Computing in the clouds. Networker 11(4), 16–25 (2007). doi: 10.1145/1327512.1327513 CrossRefGoogle Scholar
  55. 55.
    Whitaker, A., Shaw, M., Gribble, S.D.: Denali: lightweight virtual machines for distributed and networked applications. In: Proceedings of the USENIX Annual Technical Conference (2002) Google Scholar
  56. 56.
    Xu, M.Q.: Effective metacomputing using lsf multicluster. In: IEEE International Symposium on Cluster Computing and the Grid, p. 100 (2001). doi: 10.1109/CCGRID.2001.923181

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.University of SalentoLecceItaly

Personalised recommendations