Advertisement

Introduction to Structure and Motion Factorization

  • Guanghui Wang
  • Q. M. Jonathan Wu
Part of the Advances in Pattern Recognition book series (ACVPR)

Abstract

The chapter reviews some popular algorithms for structure and motion factorization. We first introduce the problem of structure and motion recovery. Then, present the main idea of the following factorization algorithms for different kinds of scenarios under different projection models. (i) Structure and motion factorization of rigid objects under affine assumption and its extension to perspective camera model; (ii) Nonrigid factorization under both affine and perspective projection model; (iii) Structure factorization of multiple and articulated objects.

Keywords

Singular Value Decomposition Shape Base Perspective Projection Rigid Object Factorization Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aanæs, H., Fisker, R., Åström, K., Carstensen, J.M.: Robust factorization. IEEE Trans. Pattern Anal. Mach. Intell.24(9), 1215–1225 (2002) CrossRefGoogle Scholar
  2. 2.
    Anandan, P., Irani, M.: Factorization with uncertainty. Int. J. Comput. Vis.49(2–3), 101–116 (2002) MATHCrossRefGoogle Scholar
  3. 3.
    Bascle, B., Blake, A.: Separability of pose and expression in facial tracing and animation. In: Proc. of the International Conference on Computer Vision, pp. 323–328 (1998) Google Scholar
  4. 4.
    Brand, M.: Morphable 3D models from video. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 456–463 (2001) Google Scholar
  5. 5.
    Brand, M.: A direct method for 3D factorization of nonrigid motion observed in 2D. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 122–128 (2005) Google Scholar
  6. 6.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 690–696 (2000) Google Scholar
  7. 7.
    Buchanan, A.M., Fitzgibbon, A.W.: Damped newton algorithms for matrix factorization with missing data. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 316–322 (2005) Google Scholar
  8. 8.
    Christy, S., Horaud, R.: Euclidean shape and motion from multiple perspective views by affine iterations. IEEE Trans. Pattern Anal. Mach. Intell.18(11), 1098–1104 (1996) CrossRefGoogle Scholar
  9. 9.
    Costeira, J., Kanade, T.: A multibody factorization method for independent moving objects. Int. J. Comput. Vis.29(3), 159–179 (1998) CrossRefGoogle Scholar
  10. 10.
    Del Bue, A.: Deformable 3-D modelling from uncalibrated video sequences. Ph.D. Thesis, Queen Mary, University of London (2007) Google Scholar
  11. 11.
    Del Bue, A., Agapito, L.: Non-rigid stereo factorization. Int. J. Comput. Vis.66(2), 193–207 (2006) CrossRefGoogle Scholar
  12. 12.
    Del Bue, A., Lladó, X., de Agapito, L.: Non-rigid metric shape and motion recovery from uncalibrated images using priors. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1191–1198 (2006) Google Scholar
  13. 13.
    Del Bue, A., Smeraldi, F., Agapito, L.: Non-rigid structure from motion using nonparametric tracking and non-linear optimization. In: Proc. of IEEE Workshop in Articulated and Nonrigid Motion, pp. 8–15 (2004) Google Scholar
  14. 14.
    Gruber, A., Weiss, Y.: Multibody factorization with uncertainty and missing data using the EM algorithm. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 707–714 (2004) Google Scholar
  15. 15.
    Han, M., Kanade, T.: Creating 3D models with uncalibrated cameras. In: Proc. of IEEE Computer Society Workshop on the Application of Computer Vision (2000) Google Scholar
  16. 16.
    Hartley, R., Vidal, R.: Perspective nonrigid shape and motion recovery. In: Proc. of European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 5302, pp. 276–289. Springer, Berlin (2008) Google Scholar
  17. 17.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518 MATHCrossRefGoogle Scholar
  18. 18.
    Heyden, A., Berthilsson, R., Sparr, G.: An iterative factorization method for projective structure and motion from image sequences. Image Vis. Comput.17(13), 981–991 (1999) CrossRefGoogle Scholar
  19. 19.
    Kanade, T., Morris, D.D.: Factorization methods for structure from motion. Philos. Trans. R. Soc. Lond. Ser. A356, 1153–1173 (2001) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kanatani, K.: Motion segmentation by subspace separation and model selection. In: Proc. of International Conference on Computer Vision, vol. 2 (2001) Google Scholar
  21. 21.
    Li, T., Kallem, V., Singaraju, D., Vidal, R.: Projective factorization of multiple rigid-body motions. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2007) Google Scholar
  22. 22.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999) Google Scholar
  23. 23.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981) Google Scholar
  24. 24.
    Mahamud, S., Hebert, M.: Iterative projective reconstruction from multiple views. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 430–437 (2000) Google Scholar
  25. 25.
    Okatani, T., Deguchi, K.: On the Wiberg algorithm for matrix factorization in the presence of missing components. Int. J. Comput. Vis.72(3), 329–337 (2007) CrossRefGoogle Scholar
  26. 26.
    Oliensis, J., Hartley, R.: Iterative extensions of the Sturm/Triggs algorithm: Convergence and nonconvergence. IEEE Trans. Pattern Anal. Mach. Intell.29(12), 2217–2233 (2007) CrossRefGoogle Scholar
  27. 27.
    Ozden, K.E., Schindler, K., Van Gool, L.: Multibody structure-from-motion in practice. IEEE Trans. Pattern Anal. Mach. Intell.32(6), 1134–1141 (2010) CrossRefGoogle Scholar
  28. 28.
    Poelman, C., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Pattern Anal. Mach. Intell.19(3), 206–218 (1997) CrossRefGoogle Scholar
  29. 29.
    Quan, L.: Self-calibration of an affine camera from multiple views. Int. J. Comput. Vis.19(1), 93–105 (1996) CrossRefGoogle Scholar
  30. 30.
    Quan, L., Kanade, T.: A factorization method for affine structure from line correspondences. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 803–808 (1996) Google Scholar
  31. 31.
    Rabaud, V., Belongie, S.: Re-thinking non-rigid structure from motion. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2008) Google Scholar
  32. 32.
    Shi, J., Tomasi, C.: Good features to track. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994) Google Scholar
  33. 33.
    Sturm, P.F., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: Proc. of European Conference on Computer Vision, vol. 2, pp. 709–720 (1996) Google Scholar
  34. 34.
    Sugaya, Y., Kanatani, K.: Outlier removal for motion tracking by subspace separation. IEICE Trans. Inf. Syst.86, 1095–1102 (2003) Google Scholar
  35. 35.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization method. Int. J. Comput. Vis.9(2), 137–154 (1992) CrossRefGoogle Scholar
  36. 36.
    Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Trans. Pattern Anal. Mach. Intell.30(5), 878–892 (2008) CrossRefGoogle Scholar
  37. 37.
    Torresani, L., Yang, D.B., Alexander, E.J., Bregler, C.: Tracking and modeling non-rigid objects with rank constraints. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 493–500 (2001) Google Scholar
  38. 38.
    Tresadern, P., Reid, I.: Articulated structure from motion by factorization. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1110–1115 (2005) Google Scholar
  39. 39.
    Triggs, B.: Factorization methods for projective structure and motion. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 845–851 (1996) Google Scholar
  40. 40.
    Vidal, R., Abretske, D.: Nonrigid shape and motion from multiple perspective views. In: Proc. of European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 3952, pp. 205–218. Springer, Berlin (2006) Google Scholar
  41. 41.
    Wang, G., Tsui, H.T., Wu, J.: Rotation constrained power factorization for structure from motion of nonrigid objects. Pattern Recogn. Lett.29(1), 72–80 (2008) CrossRefGoogle Scholar
  42. 42.
    Wang, G., Wu, J.: Quasi-perspective projection model: Theory and application to structure and motion factorization from uncalibrated image sequences. Int. J. Comput. Vis.87(3), 213–234 (2010) CrossRefGoogle Scholar
  43. 43.
    Xiao, J., Chai, J., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. Int. J. Comput. Vis.67(2), 233–246 (2006) CrossRefGoogle Scholar
  44. 44.
    Xiao, J., Chai, J.X., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. In: Proc. of European Conference on Computer Vision, vol. 4, pp. 573–587 (2004) Google Scholar
  45. 45.
    Xiao, J., Kanade, T.: Uncalibrated perspective reconstruction of deformable structures. In: Proc. of the International Conference on Computer Vision, vol. 2, pp. 1075–1082 (2005) Google Scholar
  46. 46.
    Yan, J., Pollefeys, M.: A factorization-based approach to articulated motion recovery. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 815–821 (2005) Google Scholar
  47. 47.
    Yan, J., Pollefeys, M.: A factorization-based approach for articulated nonrigid shape, motion and kinematic chain recovery from video. IEEE Trans. Pattern Anal. Mach. Intell.30(5), 865–877 (2008) CrossRefGoogle Scholar
  48. 48.
    Zaharescu, A., Horaud, R.: Robust factorization methods using a Gaussian/uniform mixture model. Int. J. Comput. Vis.81(3), 240–258 (2009) CrossRefGoogle Scholar
  49. 49.
    Zelnik-Manor, L., Irani, M.: Degeneracies, dependencies and their implications in multi-body and multi-sequence factorizations. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, p. 287 (2003) Google Scholar
  50. 50.
    Zelnik-Manor, L., Irani, M.: On single-sequence and multi-sequence factorizations. Int. J. Comput. Vis.67(3), 313–326 (2006) CrossRefGoogle Scholar
  51. 51.
    Zelnik-Manor, L., Machline, M., Irani, M.: Multi-body factorization with uncertainty: Revisiting motion consistency. Int. J. Comput. Vis.68(1), 27–41 (2006) CrossRefGoogle Scholar
  52. 52.
    Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell.78(1–2), 87–119 (1995) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

There are no affiliations available

Personalised recommendations