Skip to main content

Part of the book series: Advances in Pattern Recognition ((ACVPR))

  • 1036 Accesses

Abstract

The chapter investigates geometrical properties of quasi-perspective projection model in one and two-view geometry. The main results are as follows. (i) Quasi-perspective projection matrix has nine degrees of freedom, and the parallelism alongX andY directions in world system are preserved in images. (ii) Quasi-fundamental matrix can be simplified to a special form with only six degrees of freedom. The fundamental matrix is invariant to any non-singular projective transformation. (iii) Plane induced homography under quasi-perspective model can be simplified to a special form defined by six degrees of freedom. The quasi-homography may be recovered from two pairs of corresponding points with known fundamental matrix. (iv) Any two reconstructions in quasi-perspective space are defined up to a non-singular quasi-perspective transformation.

Euclid taught me that without assumptions there is no proof. Therefore, in any argument, examine the assumptions.

Eric Temple Bell (1883–1960)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, C.M., Lai, S.H.: A consensus sampling technique for fast and robust model fitting. Pattern Recogn.42(7), 1318–1329 (2009)

    Article  MATH  Google Scholar 

  2. Dellaert, F., Seitz, S.M., Thorpe, C.E., Thrun, S.: Structure from motion without correspondence. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2557–2564 (2000)

    Google Scholar 

  3. Faugeras, O.: Stratification of 3-D vision: projective, affine, and metric representations. J. Opt. Soc. Am. A12, 465–484 (1995)

    Article  Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Guilbert, N., Bartoli, A., Heyden, A.: Affine approximation for direct batch recovery of Euclidean structure and motion from sparse data. Int. J. Comput. Vis.69(3), 317–333 (2006)

    Article  Google Scholar 

  6. Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell.19(6), 580–593 (1997)

    Article  Google Scholar 

  7. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

    Book  MATH  Google Scholar 

  8. Hu, M., McMenemy, K., Ferguson, S., Dodds, G., Yuan, B.: Epipolar geometry estimation based on evolutionary agents. Pattern Recogn.41(2), 575–591 (2008)

    Article  MATH  Google Scholar 

  9. Lehmann, S., Bradley, A.P., Clarkson, I.V.L., Williams, J., Kootsookos, P.J.: Correspondence-free determination of the affine fundamental matrix. IEEE Trans. Pattern Anal. Mach. Intell.29(1), 82–97 (2007)

    Article  Google Scholar 

  10. Mendonça, P.R.S., Cipolla, R.: Analysis and computation of an affine trifocal tensor. In: Proc. of British Machine Vision Conference, pp. 125–133 (1998)

    Google Scholar 

  11. Mundy, J.L., Zisserman, A.: Geometric Invariance in Computer Vision. MIT Press, Cambridge (1992)

    Google Scholar 

  12. Oliensis, J., Hartley, R.: Iterative extensions of the Sturm/Triggs algorithm: Convergence and nonconvergence. IEEE Trans. Pattern Anal. Mach. Intell.29(12), 2217–2233 (2007)

    Article  Google Scholar 

  13. Torr, P.H.S., Zisserman, A., Maybank, S.J.: Robust detection of degenerate configurations while estimating the fundamental matrix. Comput. Vis. Image Underst.71(3), 312–333 (1998)

    Article  Google Scholar 

  14. Poelman, C., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Pattern Anal. Mach. Intell.19(3), 206–218 (1997)

    Article  Google Scholar 

  15. Shapiro, L.S., Zisserman, A., Brady, M.: 3D motion recovery via affine epipolar geometry. Int. J. Comput. Vis.16(2), 147–182 (1995)

    Article  Google Scholar 

  16. Shimshoni, I., Basri, R., Rivlin, E.: A geometric interpretation of weak-perspective motion. IEEE Trans. Pattern Anal. Mach. Intell.21(3), 252–257 (1999)

    Article  Google Scholar 

  17. Wang, G.: A hybrid system for feature matching based on sift and epipolar constraints. Tech. Rep. Department of ECE, University of Windsor (2006)

    Google Scholar 

  18. Wang, G., Wu, J.: Quasi-perspective projection with applications to 3D factorization from uncalibrated image sequences. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  19. Wang, G., Wu, J.: Perspective 3D Euclidean reconstruction with varying camera parameters. IEEE Trans. Circuits Syst. Video Technol.19(12), 1793–1803 (2009)

    Article  Google Scholar 

  20. Wang, G., Wu, J.: The quasi-perspective model: Geometric properties and 3D reconstruction. Pattern Recogn.43(5), 1932–1942 (2010)

    Article  MATH  Google Scholar 

  21. Wang, G., Wu, J.: Quasi-perspective projection model: Theory and application to structure and motion factorization from uncalibrated image sequences. Int. J. Comput. Vis.87(3), 213–234 (2010)

    Article  Google Scholar 

  22. Weng, J., Huang, T., Ahuja, N.: Motion and structure from two perspective views: Algorithms. IEEE Trans. Pattern Anal. Mach. Intell.11(5), 451–476 (1997)

    Article  Google Scholar 

  23. Wolf, L., Shashua, A.: Affine 3-D reconstruction from two projective images of independently translating planes. In: Proc. of International Conference on Computer Vision, pp. 238–244 (2001)

    Google Scholar 

  24. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell.22(11), 1330–1334 (2000)

    Article  Google Scholar 

  25. Zhang, Z., Anandan, P., Shum, H.Y.: What can be determined from a full and a weak perspective image? In: Proc. of International Conference on Computer Vision, pp. 680–687 (1999)

    Google Scholar 

  26. Zhang, Z., Kanade, T.: Determining the epipolar geometry and its uncertainty: A review. Int. J. Comput. Vis.27(2), 161–195 (1998)

    Article  Google Scholar 

  27. Zhang, Z., Xu, G.: A general expression of the fundamental matrix for both projective and affine cameras. In: Proc. of International Joint Conference on Artificial Intelligence, pp. 1502–1507 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanghui Wang or Guanghui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wang, G., Wu, Q.M.J. (2011). Geometrical Properties of Quasi-Perspective Projection. In: Guide to Three Dimensional Structure and Motion Factorization. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-046-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-046-5_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-045-8

  • Online ISBN: 978-0-85729-046-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics