Introduction to 3D Computer Vision

  • Guanghui Wang
  • Q. M. Jonathan Wu
Part of the Advances in Pattern Recognition book series (ACVPR)


This chapter introduces some basic concepts and ideas of computer vision, such as imaging geometry of cameras, single view geometry, and two-view geometry. In particular, the chapter presents two practical examples. One is on single view metrology, calibration, and reconstruction; the other is a hybrid method for reconstruction of structured scenes from two uncalibrated images.


Projection Matrix Camera Calibration Fundamental Matrix Space Plane Single View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baillard, C., Zisserman, A.: Automatic reconstruction of piecewise planar models from multiple views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 559–565 (1999) Google Scholar
  2. 2.
    Bartoli, A., Sturm, P.: Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. Int. J. Comput. Vis.52(1), 45–64 (2003) MATHCrossRefGoogle Scholar
  3. 3.
    Caprile, B., Torre, V.: Using vanishing points for camera calibration. Int. J. Comput. Vis.4(2), 127–140 (1990) CrossRefGoogle Scholar
  4. 4.
    Cipolla, R., Robertson, D., Boyer, E.: Photobuilder—3D models of architectural scenes from uncalibrated images. In: Proceedings of the IEEE International Conference on Multimedia Computing and Systems, pp. 25–31. IEEE Computer Society, Washington (1999) CrossRefGoogle Scholar
  5. 5.
    Criminisi, A., Reid, I., Zisserman, A.: A plane measuring device. Image Vis. Comput.17(8), 625–634 (1999) CrossRefGoogle Scholar
  6. 6.
    Criminisi, A., Reid, I.D., Zisserman, A.: Single view metrology. Int. J. Comput. Vis.40(2), 123–148 (2000) MATHCrossRefGoogle Scholar
  7. 7.
    Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In: SIGGRAPH, pp. 11–20 (1996) Google Scholar
  8. 8.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993) Google Scholar
  9. 9.
    Faugeras, O.: Stratification of three-dimensional vision: projective, affine, and metric representations. J. Opt. Soc. Am. A12, 465–484 (1995) CrossRefGoogle Scholar
  10. 10.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM24(6), 381–395 (1981) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518 MATHCrossRefGoogle Scholar
  12. 12.
    Heuvel, F.A.v.: 3D reconstruction from a single image using geometric constraints. ISPRS J. Photogram. Remote Sens.53(6), 354–368 (1998) CrossRefGoogle Scholar
  13. 13.
    Liebowitz, D., Criminisi, A., Zisserman, A.: Creating architectural models from images. In: Proceedings of Eurographics, pp. 39–50 (1999) Google Scholar
  14. 14.
    Luong, Q.T., Viéville, T.: Canonical representations for the geometries of multiple projective views. Comput. Vis. Image Underst.64(2), 193–229 (1996) CrossRefGoogle Scholar
  15. 15.
    Schmid, C., Zisserman, A.: Automatic line matching across views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 666–671 (1997) Google Scholar
  16. 16.
    Wang, G., Hu, Z., Wu, F.: Single view based measurement on space planes. J. Comput. Sci. Technol.19(3), 374–382 (2004) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Wang, G., Tsui, H.T., Hu, Z.: Reconstruction of structured scenes from two uncalibrated images. Pattern Recogn. Lett.26(2), 207–220 (2005) CrossRefGoogle Scholar
  18. 18.
    Wang, G., Tsui, H.T., Wu, J.: What can we learn about the scene structure from three orthogonal vanishing points in images. Pattern Recogn. Lett.30(3), 192–202 (2009) CrossRefGoogle Scholar
  19. 19.
    Wang, G., Tsui, H.T., Hu, Z., Wu, F.: Camera calibration and 3D reconstruction from a single view based on scene constraints. Image Vis. Comput.23(3), 311–323 (2005) CrossRefGoogle Scholar
  20. 20.
    Wang, G., Hu, Z., Wu, F., Tsui, H.T.: Single view metrology from scene constraints. Image Vis. Comput.23(9), 831–840 (2005) CrossRefGoogle Scholar
  21. 21.
    Werner, T., Zisserman, A.: New techniques for automated architecture reconstruction from photographs. In: Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, vol. 2, pp. 541–555 (2002) Google Scholar
  22. 22.
    Wilczkowiak, M., Boyer, E., Sturm, P.: Camera calibration and 3D reconstruction from single images using parallelepipeds. In: Proceedings of International Conference on Computer Vision, vol. 1 (2001) Google Scholar
  23. 23.
    Wilczkowiak, M., Boyer, E., Sturm, P.: 3D modeling using geometric constraints: A parallelepiped based approach. In: Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, vol. 4, pp. 221–237 (2002) Google Scholar
  24. 24.
    Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell.78(1–2), 87–119 (1995) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Systems Design EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Dept. Electrical & Computer EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations