Skip to main content

Stabilization of Navier–Stokes Flows

  • Chapter
Stabilization of Navier–Stokes Flows

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In this chapter we discuss the feedback stabilization of stationary (equilibrium) solutions to Navier–Stokes equations. The design of a robust stabilizing feedback control is the principal way to suppress instabilities and turbulence occurring in the dynamics of the fluid and we treat this problem in the case of internal and boundary controllers. The first case, already presented in an abstract setting in Chap. 2, is that in which the controller is distributed in a spatial domain \(O\) and has compact support taken arbitrarily small. The second case is that where the controller is concentrated on the boundary \(\partial O\). In both cases, we design a stabilizable feedback linear controller which is robust and has a finite-dimensional structure, that is, it is a linear combination of eigenfunctions for the corresponding linearized systems. From the control theory point of view, this means that the actuation, though infinite-dimensional, is confined to an arbitrary subdomain \(O_{\rm 0} \) or to the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aamo OM, Fosseen TI (2002) Tutorial on feedback control of flows, part I: Stabilization of fluid flows in channels and pipes. Model. Identif. Control 23:161–226

    Article  Google Scholar 

  2. Aamo OM, Krstic M, Bewley TR (2003) Control of mixing by boundary feedback in 2D-channel. Automatica 39:1597–1606

    Article  MathSciNet  MATH  Google Scholar 

  3. Balogh A, Liu W-L, Krstic M (2001) Stability enhancement by boundary control in 2D channel flow. IEEE Trans. Autom. Control 11:1696–1711

    Article  MathSciNet  Google Scholar 

  4. Barbu V (2003) Feedback stabilization of Navier–Stokes equations. ESAIM COCV 9:197–206

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbu V (2007) Stabilization of a plane channel flow by wall normal controllers. Nonlinear Anal. Theory-Methods Appl. 56:145–168

    MathSciNet  MATH  Google Scholar 

  6. Barbu V (2010) Optimal stabilizable feedback controller for Navier–Stokes equations. In: Leizarowitz et al. (eds) Nonlinear Analysis and Optimization: Nonlinear Analysis. Contemporary Math. 513. Am. Math. Soc., Providence

    Google Scholar 

  7. Barbu V, Coca D, Yan Y (2008) Internal optimal controller synthesis for Navier–Stokes equations. Numer. Funct. Anal. 29:225–242

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbu V, Lasiecka I, Triggiani R (2006) Abstract setting for tangential boundary stabilization of Navier–Stokes equations by high and low-gain feedback controllers. Nonlinear Anal. 64:2704–2746

    Article  MathSciNet  MATH  Google Scholar 

  9. Barbu V, Lasiecka I, Triggiani R (2006) Tangential boundary stabilization of Navier–Stokes equations. Mem. Am. Math. Soc. 852:1–145

    MathSciNet  Google Scholar 

  10. Barbu V, Lefter C (2003) Internal stabilizability of the Navier–Stokes equations. Syst. Control Lett. 48:161–167

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbu V, Rodriguez S, Shirikyan A (2010) Internal stabilization for Navier–Stokes equations by means of finite dimensional controllers. SIAM J. Control Optim. (to appear)

    Google Scholar 

  12. Barbu V, Triggiani R (2004) Internal stabilization of Navier–Stokes equations with finite dimensional controllers. Indiana Univ. Math. J. 53:1443–1494

    Article  MathSciNet  MATH  Google Scholar 

  13. Barbu V, Wang G (2005) Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems. Indiana Univ. Math. J. 54:1521–1546

    Article  MathSciNet  MATH  Google Scholar 

  14. Bedra (2009) Feedback stabilization of the 2-D and 3-D Navier–Stokes equations based on an extended system. ESAIM COCV 15:934–968

    Article  Google Scholar 

  15. Bedra M (2009) Lyapunov functions and local feedback boundary stabilization of the Navier–Stokes equations. SIAM J. Control Optim. 48:1797–1830

    Article  MathSciNet  Google Scholar 

  16. Burns JA, Singler JR (2006) New scenarios, system sensitivity and feedback control. In: God-il-Hak (ed) Transition and Turbulence Control. Lecture Notes Series, NUS 18:1–35. World Scientific, Singapore

    Google Scholar 

  17. Constantin P, Foias C (1989) Navier–Stokes Equations. University of Chicago Press, Chicago, London

    Google Scholar 

  18. Coron JM (2007) Control and Nonlinearity. AMS, Providence RI

    MATH  Google Scholar 

  19. Fursikov AV (2000) Optimal Control of Systems Theory and Applications. AMS, Providence RI

    Google Scholar 

  20. Fursikov AV (2002) Real processes of the 3-D Navier–Stokes systems and its feedback stabilization from the boundary. In: Agranovic MS, Shubin MA (eds) AMS Translations. Partial Differential Equations. M. Vishnik Seminar 95–123

    Google Scholar 

  21. Fursikov AV (2004) Stabilization for the 3-D Navier–Stokes systems by feedback boundary control. Discrete Contin. Dyn. Syst. 10:289–314

    Article  MathSciNet  MATH  Google Scholar 

  22. Fursikov AV, Imanuvilov OY (1998) Local exact controllability of the Boussinesque equation. SIAM J. Control Optim. 36:391–421

    Article  MathSciNet  MATH  Google Scholar 

  23. Hormander L (1976) Linear Partial Differential Operators. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  24. Imanuvilov OY (1998) On exact controllability for Navier–Stokes equations. ESAIM COCV 3:97–131

    Article  MathSciNet  MATH  Google Scholar 

  25. Joseph DD (1976) Stability of Fluid Motions. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  26. Lefter C (2009) Feedback stabilization of 2-D Navier–Stokes equations with Navier slip boundary conditions. Nonlinear Anal. 70:553–562

    Article  MathSciNet  MATH  Google Scholar 

  27. Munteanu I (2010) Normal feedback stabilization of periodic flows in a 2-D channel (to appear)

    Google Scholar 

  28. Ravindran SS (2000) Reduced-order adaptive controllers for fluid flows using POD. J. Sci. Comput. 15(4):457–478

    Article  MathSciNet  MATH  Google Scholar 

  29. Smale S (1965) An infinite dimensional version of Sard’s theorem. Am. J. Math. 18:158–174

    MathSciNet  Google Scholar 

  30. Raymond JP (2006) Feedback boundary stabilization of the two dimensional Navier–Stokes equations. SIAM J. Control Optim. 45:790–828

    Article  MathSciNet  MATH  Google Scholar 

  31. Raymond JP (2007) Feedback boundary stabilization of the three dimensional incompressible Navier–Stokes equations. J. Math. Pures Appl. 87:627–669

    MathSciNet  MATH  Google Scholar 

  32. Temam R (1979) Navier–Stokes Equations. North-Holland, Amsterdam

    MATH  Google Scholar 

  33. Temam R (1985) Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia

    Google Scholar 

  34. Triggiani R (2006) Stability enhancement of a 2-D linear Navier–Stokes channel flow by a 2-D wall normal boundary controller. Discrete Contin. Dyn. Syst. SB 8:279–314

    Article  MathSciNet  Google Scholar 

  35. Uhlenbeck K (1974) Eigenfunctions of Laplace operators. Bull. AMS 78:1073–1076

    Article  MathSciNet  Google Scholar 

  36. Vazquez R, Krstic M (2004) A closed form feedback controller for stabilization of linearized Navier–Stokes equations: The 2D Poisseuille system. IEEE Trans. Autom. Control 52:2298–2300

    Article  MathSciNet  Google Scholar 

  37. Vazquez R, Tvelat E, Coron JM (2008) Control for fast and stable Laminar-to-High-Reynolds-Number transfer in a 2D channel flow. Discrete Contin. Dyn. Syst. SB 10:925–956

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Barbu .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Barbu, V. (2011). Stabilization of Navier–Stokes Flows. In: Stabilization of Navier–Stokes Flows. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-043-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-043-4_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-042-7

  • Online ISBN: 978-0-85729-043-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics