Feedback Control over Limited Capacity Channels

  • Hideaki Ishii
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 406)


In this chapter, we present recent approaches towards networked control systems (NCSs) motivated by capacity constraints in communication channels. Consideration of such constraints is important since the channels are shared by various system components, and thus the communication rate necessary for control-related signals must be explicitly taken into account. The chapter consists of two main parts. In the first part, we discuss control problems involving quantization effects. While such problems have a long history in the control field, the characteristic aspect here is that the problems have strong ties to the theoretical question on how much information is necessary for the purpose of feedback control. The second part provides an information theoretic approach to the well-known Bode’s integral formulae, where properties of sensitivity functions are characterized by the plant poles and zeros. We will observe the usefulness of notions such as entropy in deriving such formulae. The results in both parts exhibit fundamental limitations that arise due to the presence of capacity limited channels and are hence unique to networked control. Moreover, we will describe the close interplay between the two fields of control and communication.


Packet Loss Network Control Loss Probability Network Control System Information Theoretic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Special Section on Complex Networked Control Systems. IEEE Control Systems Magazine, 27(4) (2007)Google Scholar
  2. 2.
    Antsaklis, P.J., Baillieul, J. (Guest eds.): Special Issue on the Technology of Networked Control Systems. Proc. IEEE 95(1) (2007)Google Scholar
  3. 3.
    Baillieul, J.: Feedback designs in information-based control. In: Pasik-Duncan, B. (ed.) Stochastic Theory and Control. LNCIS, vol. 280, pp. 35–57. Springer, Berlin (2002)CrossRefGoogle Scholar
  4. 4.
    Bertram, J.E.: The effect of quantization in sampled-feedback systems. Trans. Amer. Inst. Elec. Engineers 77(2), 177–182 (1958)Google Scholar
  5. 5.
    Bode, H.W.: Network Analysis and Feedback Amplifier Design. D. Van Nostrand, New York (1945)Google Scholar
  6. 6.
    Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45, 1279–1289 (2000)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bullo, F., Cortés, J., Piccoli, B., (Guest eds.): Special Issue on Control and Optimization in Cooperative Networks. SIAM J. Contr. Optim. 48(1) (2009)Google Scholar
  8. 8.
    Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer, London (2005)MATHGoogle Scholar
  9. 9.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)MATHCrossRefGoogle Scholar
  10. 10.
    Curry, R.E.: Estimation and Control with Quantized Measurements. MIT Press, Cambridge (1970)MATHGoogle Scholar
  11. 11.
    De Persis, C.: n-bit stabilization of n-dimensional nonlinear systems in feedforward form. IEEE Trans. Autom. Control 50, 285–297 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Trans. Autom. Control 35, 916–924 (1990)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Elia, N.: When Bode meets Shannon: Control-oriented feedback communication schemes. IEEE Trans. Autom. Control 49, 1477–1488 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Elia, N.: Remote stabilization over fading channels. Systems & Control Letters 54, 238–249 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46, 1384–1400 (2001)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Fagnani, F., Zampieri, S.: Quantized stabilization of linear systems: Complexity versus performance. IEEE Trans. Autom. Control 49, 1534–1548 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 5th edn. Prentice Hall, Uppersaddle River (2006)Google Scholar
  18. 18.
    Freudenberg, J.S., Looze, D.P.: Frequency Domain Properties of Scalar and Multivariable Feedback Systems. Springer, Berlin (1988)MATHCrossRefGoogle Scholar
  19. 19.
    Fu, M., Xie, L.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50, 1698–1711 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice Hall, Englewood Cliffs (1984)MATHGoogle Scholar
  21. 21.
    Gupta, V., Dana, A.F., Hespanha, J.P., Murray, R.M.: Data transmission over networks for estimation and control. IEEE Trans. Autom. Control 54, 1807–1819 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hadjicostis, C.N., Touri, R.: Feedback control utilizing packet dropping network links. In: Proc. 41st IEEE Conf. on Decision and Control, pp. 1205–1210 (2002)Google Scholar
  23. 23.
    Hayakawa, T., Haddad, W.M., Leonessa, A.: A Lyapunov-based adaptive control framework for discrete-time nonlinear systems with exogenous disturbances. Int. J. Control 77, 250–263 (2004)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Hayakawa, T., Ishii, H., Tsumura, K.: Adaptive quantized control for linear uncertain discrete-time systems. Automatica 45, 692–700 (2009)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hayakawa, T., Ishii, H., Tsumura, K.: Adaptive quantized control for nonlinear uncertain systems. Systems & Control Letters 58, 625–632 (2009)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Hristu-Varsakelis, D., Levine, W.S. (eds.): Handbook of Networked and Embedded Control Systems. Birkhäuser, Boston (2005)Google Scholar
  27. 27.
    Imer, O.Ç., Yüksel, S., Başar, T.: Optimal control of LTI systems over unreliable communication links. Automatica 42, 1429–1439 (2006)MATHCrossRefGoogle Scholar
  28. 28.
    Ishii, H.: Stabilization under shared communication with message losses and its limitations. In: Proc. 45th IEEE Conf. on Decision and Control, pp. 4974–4979 (2006) See also arXiv:0806.3609Google Scholar
  29. 29.
    Ishii, H.: H  ∞  control with limited communication and message losses. Systems & Control Letters 57, 322–331 (2008)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ishii, H.: Limitations in remote stabilization over unreliable channels without acknowledgements. Automatica 45, 2278–2285 (2009)MATHCrossRefGoogle Scholar
  31. 31.
    Ishii, H., Başar, T.: Remote control of LTI systems over networks with state quantization. Systems & Control Letters 54, 15–31 (2005)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Ishii, H., Başar, T., Tempo, R.: Randomized algorithms for quadratic stability of quantized sampled-data systems. Automatica 40, 839–846 (2004)MATHCrossRefGoogle Scholar
  33. 33.
    Ishii, H., Francis, B.A.: Limited Data Rate in Control Systems with Networks. LNCIS, vol. 275. Springer, Berlin (2002)MATHGoogle Scholar
  34. 34.
    Ishii, H., Ohyama, C., Tsumura, K.: Performance analysis of control systems under limited data rates. Trans. SICE 44, 396–404 (2008)Google Scholar
  35. 35.
    Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Uppersaddle River (1996)Google Scholar
  36. 36.
    Liberzon, D.: On stabilization of linear systems with limited information. IEEE Trans. Autom. Control 48, 304–307 (2003)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Liberzon, D., Nesic, D.: Input-to-state stabilization of linear systems with quantized state measurements. IEEE Trans. Autom. Control 52, 767–781 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ling, Q., Lemmon, M.D.: Power spectral analysis of networked control systems with data dropouts. IEEE Trans. Autom. Control 49, 955–960 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Martins, N.C., Dahleh, M.A., Doyle, J.C.: Fundamental limitations of disturbance attenuation in the presence of side information. IEEE Trans. Autom. Control 52, 56–66 (2007)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Matveev, A.S., Savkin, A.V.: Estimation and Control over Communication Networks. Birkhäuser, Boston (2008)Google Scholar
  41. 41.
    Nair, G., Fagnani, F., Zampieri, S., Evans, R.J.: Feedback control under data constraints: An overview. Proc. IEEE 95(1), 108–137 (2007)CrossRefGoogle Scholar
  42. 42.
    Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feedback date rates. SIAM J. Contr. Optim. 43, 413–436 (2004)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Okano, K., Hara, S., Ishii, H.: Characterization of a complementary sensitivity property in feedback control: An information theoretic approach. Automatica 45, 504–509 (2009)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Okano, K., Ishii, H., Hara, S.: Sensitivity analysis of networked control systems via an information theoretic approach. In: Proc. 47th IEEE Conf. on Decision and Control, pp. 3360–3365 (2008)Google Scholar
  45. 45.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes, 4th edn. McGraw Hill, New York (2002)Google Scholar
  46. 46.
    Petersen, I.R., Savkin, A.V.: Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel. In: Proc. 40th IEEE Conf. on Decision and Control, pp. 304–309 (2001)Google Scholar
  47. 47.
    Renesas Technology Corp.,
  48. 48.
    Seiler, P., Sengupta, R.: An H  ∞  approach to networked control. IEEE Trans. Autom. Control 50, 356–364 (2005)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Seron, M.M., Braslavsky, J.H., Goodwin, G.C.: Fundamental Limitations in Filtering and Control. Springer, London (1997)MATHCrossRefGoogle Scholar
  50. 50.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49, 1453–1464 (2004)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Sung, H., Hara, S.: Properties of complementary sensitivity function in SISO digital control systems. Int. J. Control 50(4), 1283–1295 (1989)MATHCrossRefGoogle Scholar
  52. 52.
    Tatikonda, S.: Some scaling properties of large distributed control systems. In: Proc. 42nd IEEE Conf. on Decision and Control, pp. 3142–3147 (2003)Google Scholar
  53. 53.
    Tatikonda, S., Mitter, S.K.: Control under communication constraints. IEEE Trans. Autom. Control 49, 1056–1068 (2004)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Tatikonda, S., Sahai, A., Mitter, S.K.: Stochastic linear control over a communication channel. IEEE Trans. Autom. Control 49, 1549–1561 (2004)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Tsumura, K., Ishii, H., Hoshina, H.: Tradeoffs between quantization and packet loss in networked control of linear systems. Automatica 45, 2963–2970 (2009)MATHCrossRefGoogle Scholar
  56. 56.
    Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints II: Stabilization with limited information feedback. IEEE Trans. Autom. Control 44, 1049–1053 (1999)MATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Yüksel, S., Başar, T.: Minimum rate coding for LTI systems over noiseless channels. IEEE Trans. Autom. Control 51, 1878–1887 (2006)CrossRefGoogle Scholar
  58. 58.
    Yüksel, S., Başar, T.: Optimal signaling policies for decentralized multi-controller stabilizability over communication channels. IEEE Trans. Autom. Control 52, 1969–1974 (2007)CrossRefGoogle Scholar
  59. 59.
    Zhang, G., Iglesias, P.A.: Nonlinear extension of Bode’s integral based on an information-theoretic interpretation. Systems & Control Letters 50, 11–19 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Hideaki Ishii

There are no affiliations available

Personalised recommendations