Advertisement

Stability and Stabilization of Networked Control Systems

  • W. P. M. H. Heemels
  • N. van de Wouw
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 406)

Abstract

The presence of a communication network in a control loop induces many imperfections such as varying transmission delays, varying sampling/transmission intervals, packet loss, communication constraints and quantization effects, which can degrade the control performance significantly and even lead to instability. Various techniques have been proposed in the literature for stability analysis and controller design for these so-called networked control systems. The aim of this chapter is to survey the main research lines in a comprehensive manner.

Keywords

Round Robin Network Control System Transmission Interval Packet Dropout Tradeoff Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antunes, D., Hespanha, J., Silvestre, C.: Control of impulsive renewal systems: Application to direct design in networked control. In: IEEE Conference on Decision and Control, pp. 6882–6887 (2009)Google Scholar
  2. 2.
    Antunes, D., Hespanha, J., Silvestre, C.: Stability of impulsive systems driven by renewal processes. In: Proc. Amer. Contr. Conf., pp. 4032–4037 (2009)Google Scholar
  3. 3.
    Balluchi, A., Murrieri, P., Sangiovanni-Vincentelli, A.L.: Controller synthesis on non-uniform and uncertain discrete-time domains. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 118–133. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Brockett, R.: Stabilization of motor networks. In: Proc. of the 34th IEEE Conf. on Decision and Control, vol. 2, pp. 1484–1488 (1995)Google Scholar
  5. 5.
    Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45, 1279–1289 (2000)Google Scholar
  6. 6.
    Carnevale, D., Teel, A.R., Nešić, D.: A Lyapunov proof of improved maximum allowable transfer interval for networked control systems. IEEE Trans. Aut. Control 52, 892–897 (2007)Google Scholar
  7. 7.
    Chaillet, A., Bicchi, A.: Delay compensation in packet-switching networked controlled sytems. In: IEEE Conf. Decision and Control, pp. 3620–3625 (2008)Google Scholar
  8. 8.
    Chen, T., Francis, B.A.: Optimal Sampled-data Control Systems. Springer, London (1995)Google Scholar
  9. 9.
    Cloosterman, M.: Control over Communication Networks: Modeling, Analysis, and Synthesis. PhD thesis Eindhoven University of Technology (2008)Google Scholar
  10. 10.
    Cloosterman, M., van de Wouw, N., Heemels, W.P.M.H., Nijmeijer, H.: Robust stability of networked control systems with time-varying network-induced delays. In: Proc. IEEE Conf. on Decision and Control, San Diego, USA, December 2006, pp. 4980–4985 (2006)Google Scholar
  11. 11.
    Cloosterman, M.B.G., Hetel, L., van de Wouw, N., Heemels, W.P.M.H., Daafouz, J., Nijmeijer, H.: Controller synthesis for networked control systems. Automatica 46, 1584–1594 (2010)Google Scholar
  12. 12.
    Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M., Nijmeijer, H.: Stabilization of networked control systems with large delays and packet dropouts. In: American Control Conference, pp. 4991–4996 (2008)Google Scholar
  13. 13.
    Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M.H., Nijmeijer, H.: Stability of networked control systems with large delays. In: 46th IEEE Conference on Decision and Control, pp. 5017–5022 (2007)Google Scholar
  14. 14.
    Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M.H., Nijmeijer, H.: Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54(7), 1575–1580 (2009)CrossRefGoogle Scholar
  15. 15.
    Daafouz, J., Bernussou, J.: Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Systems & Control Letters 43, 355–359 (2001)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach. IEEE Transactions on Automatic Control 47, 1883–1887 (2002)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Dačić, D.B., Nešić, D.: Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design. Automatica 43, 1145–1155 (2007)CrossRefMATHGoogle Scholar
  18. 18.
    de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Systems & Control Letters 37, 261–265 (1999)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Trans. Autom. Control 35, 916–924 (1990)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Donkers, M.C.F., Heemels, W.P.M.H., Bernardini, D., Bemporad, A., Shneer, V.: Stability analysis of stochastic networked control systems. In: Proc. Amer. Contr. Conf., pp. 3684–3689 (2010)Google Scholar
  21. 21.
    Donkers, M.C.F., Heemels, W.P.M.H., van de Wouw, N., Hetel, L.: Stability analysis of networked control systems using a switched linear systems approach. Submitted for journal publicationGoogle Scholar
  22. 22.
    Donkers, M.C.F., Hetel, L., Heemels, W.P.M.H., van de Wouw, N., Steinbuch, M.: Stability analysis of networked control systems using a switched linear systems approach. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 150–164. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Dritsas, L., Tzes, A.: Robust stability analysis of networked systems with varying delays. International Journal of Control (2009)Google Scholar
  24. 24.
    Franklin, G.F., Powell, J.D., Workman, M.L.: Digital control of dynamic systems. Addison-Wesley Pub. Co. Inc., Reading (1990)MATHGoogle Scholar
  25. 25.
    Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Fujioka, H.: Stability analysis for a class of networked/embedded control systems: A discrete-time approach. In: Proc. of the American Control Conf., pp. 4997–5002 (2008)Google Scholar
  27. 27.
    Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Garcia-Rivera, M., Barreiro, A.: Analysis of networked control systems with drops and variable delays. Automatica 43, 2054–2059 (2007)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Gielen, R., Olaru, S., Lazar, M.: On polytopic embeddings as a modeling framework for networked control systems. In: Proc. 3rd Int. Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, Pavia, Italy (2008)Google Scholar
  30. 30.
    Gielen, R.H., Olaru, S., Lazar, M., Heemels, W.P.M.H., van de Wouw, N., Niculescu, S.-I.: On polytopic inclusions as a modeling framework for systems with time-varying delays. Automatica 46(3), 615–619 (2010)CrossRefMATHGoogle Scholar
  31. 31.
    Goebel, R., Sanfelice, R., Teel, A.R.: Hybrid dynamical systems. IEEE Control Systems Magazine 29(2), 28–93 (2009)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Gupta, V., Chung, T.H., Hassibi, B., Murray, R.M.: On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica 42(2), 251–260 (2006)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Hea, Y., Wang, Q.-G., Wua, M., Lin, C.: Delay-range-dependent stability for systems with time-varying delay. Automatica 43, 371–376 (2007)CrossRefGoogle Scholar
  34. 34.
    Heemels, W.P.M.H., Gorter, R.J.A., van Zijl, A., Bosch, P.P.J.v.d., Weiland, S., Hendrix, W.H.A., Vonder, M.R.: Asynchronous measurement and control: a case study on motor synchronisation. Control Engineering Practice 7(12), 1467–1482 (1999)Google Scholar
  35. 35.
    Heemels, W.P.M.H., Nešić, D., Teel, A.R., van de Wouw, N.: Networked and quantized control systems with communication delays. In: Proc. Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference, Shanghai, China, pp. 7929–7935 (2009)Google Scholar
  36. 36.
    Heemels, W.P.M.H., Siahaan, H., Juloski, A., Weiland, S.: Control of quantized linear systems: an l 1-optimal control approach. In: Proc. American Control Conference, Denver, USA, pp. 3502–3507 (2003)Google Scholar
  37. 37.
    Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nešić, D.: Networked control systems with communication constraints: tradeoffs between sampling intervals and delays. In: Proc. European Control Conference in Budapest, Hungary (2009)Google Scholar
  38. 38.
    Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nešić, D.: Networked control systems with communication constraints: Tradeoffs betweens transmission intervals, delays and performance. IEEE Trans. Autom. Control 55(8), 1781–1796 (2010)CrossRefGoogle Scholar
  39. 39.
    Heemels, W.P.M.H., van de Wouw, N., Gielen, R.H., Donkers, M.C.F., Hetel, L., Olaru, S., Lazar, M., Daafouz, J., Niculescu, S.: Comparison of overapproximation methods for stability analysis of networked control systems. In: 13th International Workshop on Hybrid Systems: Computation and Control, Stockholm, Sweden, pp. 181–190 (2010)Google Scholar
  40. 40.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. of the IEEE, 138–162 (2007)Google Scholar
  41. 41.
    Hetel, L., Cloosterman, M.B.G., van de Wouw, N., Heemels, W.P.M.H., Daafouz, J., Nijmeijer, H.: Comparison of stability characterisations for networked control systems. In: Proc. Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference, Shanghai, China, pp. 7911–7916 (2009)Google Scholar
  42. 42.
    Hetel, L., Daafouz, J., Iung, C.: Stabilization of arbitrary switched linear systems with unknown time-varying delays. IEEE Trans. Autom. Control 51(10), 1668–1674 (2006)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Hetel, L., Daafouz, J., Iung, C.: Analysis and control of LTI and switched systems in digital loops via an event-based modeling. International Journal of Control 81(7), 1125–1138 (2008)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)MATHGoogle Scholar
  45. 45.
    Hristu, D., Morgansen, K.: Limited communication control. Systems & Control Letters 37(4), 193–205 (1999)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Ishii, H.: H-infty control with limited communication and message losses. Systems and Control Letters 57, 322–331 (2008)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Ishii, H., Francis, B.A.: Stabilization with control networks. Automatica 38, 1745–1751 (2002)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Kao, C.-Y., Lincoln, B.: Simple stability criteria for systems with time-varying delays. Automatica 40, 1429–1434 (2004)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Kothare, M., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32, 1361–1379 (1996)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Krtolica, R., Ozguner, U., Chan, H., Goktas, H., Winkelman, J., Liubakka, M.: Stability of linear feedback systems with random communication delays. In: Proc. American Control Conf, pp. 2648–2653 (1991)Google Scholar
  51. 51.
    Liberzon, D.: On stabilization of linear systems with limited information. IEEE Trans. Autom. Control 48(2), 304–307 (2003)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Liberzon, D.: Quantization, time delays, and nonlinear stabilization. IEEE Trans. Autom. Control 51(7), 1190–1195 (2006)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Matveev, A.S., Savkin, A.V.: The problem of state estimation via asynchronous communication channels with irregular transmission times. IEEE Trans. Autom. Control 48(4), 670–676 (2003)CrossRefMathSciNetGoogle Scholar
  54. 54.
    Mirkin, L.: Some remarks on the use of time-varying delay to model sample-and-hold circuits. IEEE Transactions on Automatic Control 52(6), 1109–1112 (2007)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Montestruque, L.A., Antsaklis, P.: Stochastic stability for model-based networked control systems. In: Proc. American Control Conf., pp. 4119–4124 (2003)Google Scholar
  56. 56.
    Montestruque, L.A., Antsaklis, P.: Stability of model-based networked control systems with time-varying transmission times. IEEE Trans. Autom. Control 49(9), 1562–1572 (2004)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Naghshtabrizi, P., Hespanha, J.P.: Designing an observer-based controller for a network control system. In: Proc. of the 44th Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, pp. 848–853 (December 2005)Google Scholar
  58. 58.
    Naghshtabrizi, P., Hespanha, J.P.: Stability of network control systems with variable sampling and delays. In: Proc. of the Forty-Fourth Annual Allerton Conf. on Communication, Control, and Computing (2006)Google Scholar
  59. 59.
    Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Stability of delay impulsive systems with application to networked control systems. In: Proc. American Control Conference, New York, USA, pp. 4899–4904 (2007)Google Scholar
  60. 60.
    Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems & Control Letters 57(5), 378–385 (2008)CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: On the robust stability and stabilization of sampled-data systems: A hybrid system approach. In: Proc. of the 45th Conf. on Decision and Contr. (December 2006)Google Scholar
  62. 62.
    Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim. 43, 413–436 (2004)CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Nešić, D., Liberzon, D.: A unified framework for design and analysis of networked and quantized control systems. IEEE Trans. Autom. Control 54(4), 732–747 (2009)CrossRefGoogle Scholar
  64. 64.
    Nešić, D., Teel, A.R., Sontag, E.D.: Formulas relating KL-stability estimates of discrete-time and sampled-data nonlinear systems. Systems & Control Letters 38(1), 49–60 (1999)CrossRefMATHMathSciNetGoogle Scholar
  65. 65.
    Nešić, D., Teel, A.R.: Input-output stability properties of networked control systems. IEEE Trans. Autom. Control 49(10), 1650–1667 (2004)CrossRefGoogle Scholar
  66. 66.
    Nešić, D., Teel, A.R.: Input-to-state stability of networked control systems. Automatica 40, 2121–2128 (2004)MATHGoogle Scholar
  67. 67.
    Nilsson, J., Bernhardsson, B., Wittenmark, B.: Stochastic analysis and control of real-time systems with random time delays. Automatica 34, 57–64 (1998)CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Nilsson, J.: Real-Time Control Systems with Delays. PhD thesis, Dept. of Automatic Control, Lund Inst. of Techn., Lund, Sweden (1998)Google Scholar
  69. 69.
    Olaru, S., Niculescu, S.-I.: Predictive Control for Linear Systems with Delayed Input Subject to Constraints. In: Proceedings of 17th IFAC World Congress 2008 17th IFAC World Congress 2008, CD–ROM, Seul, Korea (2008)Google Scholar
  70. 70.
    Pan, Y.-J., Marquez, H.J., Chen, T.: Stabilization of remote control systems with unknown time varying delays by LMI techniques. Int. Journal of Control 79(7), 752–763 (2006)CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Rehbinder, H., Sanfridson, M.: Scheduling of a limited communication channel for optimal control. Automatica 40(3), 491–500 (2004)CrossRefMATHMathSciNetGoogle Scholar
  72. 72.
    Sala, A.: Computer control under time-varying sampling period: An LMI gridding approach. Automatica 41(12), 2077–2082 (2005)CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    Schenato, L.: To zero or to hold control inputs with lossy links? IEEE Trans. Autom. Control 54, 1093–1099 (2009)MathSciNetGoogle Scholar
  74. 74.
    Seiler, P., Sengupta, R.: An \(\mathcal{H}_\infty\) approach to networked control. IEEE Trans. Autom. Control 50, 356–364 (2005)CrossRefMathSciNetGoogle Scholar
  75. 75.
    Shi, Y., Yu, B.: Output feedback stabilization of networked control systems with random delays modeled by markov chains. IEEE Trans. Autom. Control 54, 1668–1674 (2009)CrossRefMathSciNetGoogle Scholar
  76. 76.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)CrossRefMathSciNetGoogle Scholar
  77. 77.
    Skaf, J., Boyd, S.: Analysis and synthesis of state-feedback controllers with timing jitter. IEEE Transactions on Automatic Control 54(3) (2009)Google Scholar
  78. 78.
    Smith, S.C., Seiler, P.: Estimation with lossy measurements: jump estimators for jump systems. IEEE Trans. Autom. Control 48(12), 2163–2171 (2003)CrossRefMathSciNetGoogle Scholar
  79. 79.
    Suh, Y.S.: Stability and stabilization of nonuniform sampling systems. Automatica 44, 3222–3226 (2008)CrossRefMATHMathSciNetGoogle Scholar
  80. 80.
    Tabbara, M., Nešić, D.: Input-output stability of networked control systems with stochastic protocols and channels. IEEE Trans. Autom. Control 53, 1160–1175 (2008)CrossRefGoogle Scholar
  81. 81.
    Tabbara, M., Nešić, D., Teel, A.R.: Stability of wireless and wireline networked control systems. IEEE Trans. Autom. Control 52(9), 1615–1630 (2007)CrossRefGoogle Scholar
  82. 82.
    Tatikonda, S., Mitter, S.K.: Control under communication constraints. IEEE Trans. Autom. Control 49, 1056–1068 (2004)CrossRefMathSciNetGoogle Scholar
  83. 83.
    Tipsuwan, Y., Chow, M.-Y.: Control methodologies in networked control systems. Control Engineering Practice 11, 1099–1111 (2003)CrossRefGoogle Scholar
  84. 84.
    Tsumura, K., Ishii, H., Hoshina, H.: Tradeoffs between quantization and packet loss in networked control of linear systems. Automatica 45, 2963–2970 (2009)CrossRefMATHGoogle Scholar
  85. 85.
    van de Wouw, N., Naghshtabrizi, P., Cloosterman, M., Hespanha, J.P.: Tracking control for networked control systems. In: Proc. of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4441–4446 (December 2007)Google Scholar
  86. 86.
    van de Wouw, N., Naghshtabrizi, P., Cloosterman, M.B.G., Hespanha, J.P.: Tracking control for sampled-data systems with uncertain sampling intervals and delays. Intern. Journ. Robust and Nonlinear Control 20(4), 387–411 (2010)Google Scholar
  87. 87.
    van de Wouw, N., Nešić, D., Heemels, W.P.M.H.: A discrete-time framework for stability analysis of nonlinear networked control systems (submitted, 2010)Google Scholar
  88. 88.
    van der Schaft, A.J.: L2-Gain and Passivity in Nonlinear Control, 2nd edn. Springer, Heidelberg (1999)Google Scholar
  89. 89.
    van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical Systems. LNCIS, vol. 251. Springer, London (2000)MATHGoogle Scholar
  90. 90.
    van Schendel, J.J.C., Donkers, M.C.F., Heemels, W.P.M.H., van de Wouw, N.: On dropout modelling for stability analysis of networked control systems. In: Proc. American Control Conf. (2010)Google Scholar
  91. 91.
    Walsh, G.C., Belidman, O., Bushnell, L.G.: Asymptotic behavior of nonlinear networked control systems. IEEE Trans. Automat. Contr. 46, 1093–1097 (2001)CrossRefMATHGoogle Scholar
  92. 92.
    Walsh, G.C., Ye, H., Bushnell, L.G.: Stability analysis of networked control systems. IEEE Trans. on Control Systems Technology 10(3), 438–446 (2002)CrossRefGoogle Scholar
  93. 93.
    Wang, Y., Yang, G.: Multiple communication channels-based packet dropout compensation for networked control systems. IET Control Theory and Applications 2, 717–727 (2008)CrossRefMathSciNetGoogle Scholar
  94. 94.
    Wei, G., Wang, Z., He, X., Shu, H.: Filtering for networked stochastic time-delay systems with sector nonlinearity. IEEE Trans. Circuits and Systems II: Express Briefs 56, 71–75 (2009)CrossRefGoogle Scholar
  95. 95.
    Wittenmark, B., Nilsson, J., Törngren, M.: Timing problems in real-time control systems. In: Proc. of the Amer. Control Conf., Seattle, USA, pp. 2000–2004 (1995)Google Scholar
  96. 96.
    Xie, G., Wang, L.: Stabilization of networked control systems with time-varying network-induced delay. In: Proc. of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 3551–3556 (December 2004)Google Scholar
  97. 97.
    Yang, F., Wang, Z., Hung, Y.S., Gani, M.: \(\mathcal{H}_\infty\) control for networked systems with random communication delays. IEEE Trans. Autom. Control 51, 511–518 (2006)CrossRefMathSciNetGoogle Scholar
  98. 98.
    Yang, T.C.: Networked control system: a brief survey. IEE Proc.-Control Theory Appl. 153(4), 403–412 (2006)CrossRefGoogle Scholar
  99. 99.
    Yu, M., Wang, L., Chu, T.: Sampled-data stabilization of networked control systems with nonlinearity. IEE Proc.-Control Theory Appl. 152(6), 609–614 (2005)CrossRefGoogle Scholar
  100. 100.
    Yue, D., Han, Q.-L., Peng, C.: State feedback controller design of networked control systems. IEEE Trans. on circuits and systems 51(11), 640–644 (2004)CrossRefGoogle Scholar
  101. 101.
    Zhang, L., Shi, Y., Chen, T., Huang, B.: A new method for stabilization of networked control systems with random delays. IEEE Trans. Autom. Control 50(8), 1177–1181 (2005)CrossRefMathSciNetGoogle Scholar
  102. 102.
    Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Systems Magazine 21(1), 84–99 (2001)CrossRefGoogle Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • W. P. M. H. Heemels
    • 1
  • N. van de Wouw
    • 1
  1. 1.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations