Advertisement

Wireless Networking for Control: Technologies and Models

  • Mikael Johansson
  • Riku Jäntti
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 406)

Abstract

This chapter discusses technologies and models for low power wireless industrial communication. The aim of the text is to narrow the gap between the models used in the theoretical control literature with models that arise when tools from communication theory are used to model emerging standards for industrial wireless. The chapter provides a tutorial overview covering basic concepts and models for wireless propagation, medium access control, multi-hop networking, routing and transport protocols. Throughout, an effort is made to describe both key technologies and associated models of control-relevant characteristics such as latency and loss. Some existing and emerging specifications and standards, including Zigbee, WirelessHART and ISA100, are described in some detail, and links are made between the developed models and useful network abstractions for control design.

Keywords

Wireless Sensor Network Time Slot Medium Access Control Transmission Control Protocol Medium Access Control Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramson, N.: The ALOHA system – another alternative for computer communications. In: Proc. of the Fall Joint Computer Conference, pp. 281–285 (1970)Google Scholar
  2. 2.
    Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Ad Hoc Networks 3, 325–349 (2005)CrossRefGoogle Scholar
  3. 3.
    Almstrom, P., Rabi, M., Johansson, M.: Networked state estimation over a Gilbert-Elliot type channel. In: Proc. IEEE Conference on Decision and Control, Shanghai, China (December 2009)Google Scholar
  4. 4.
    Antsaklis, P., Baillieul, J.: Special issue on technology of networked control systems. Proceedings of the IEEE 95(1) (January 2007)Google Scholar
  5. 5.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall, Englewood Cliffs (1987)Google Scholar
  6. 6.
    Bhatti, G., Mehta, A., Sahinoglu, Z., Zhang, J., Viswanathan, R.: Modified beacon-enabled IEEE 802.15.4 MAC for lower latency. In: Global Telecommunications Conference, IEEE GLOBECOM 2008, pp. 1–5. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  7. 7.
    Buchholz, P., Plonnigs, J.: Analytical analysis of access-schemes of CSMA type. In: Proc. IEEE International Workshop on Factory Communication Systems, Vienna, Austria (2004)Google Scholar
  8. 8.
    Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble mac protocol for duty-cycled wireless sensor networks. In: SenSys 2006: Proceedings of the 4th international conference on Embedded networked sensor systems, pp. 307–320 (2006)Google Scholar
  9. 9.
    Chen, P., Sastry, S.: Latency and connectivity analysis tools for wireless mesh networks. In: ROBOCOMM, p. 33 (2007)Google Scholar
  10. 10.
    Costa, O.L.V., Fragoso, M.D., Marques, R.P.: Discrete-Time Markov Jump Linear Systems. Springer, Heidelberg (2005)MATHGoogle Scholar
  11. 11.
    De Couto, D.S.J.: High-Throughput Routing for Multi-Hop Wireless Networks. PhD thesis, MIT (2004)Google Scholar
  12. 12.
    Elliot, E.O.: Estimates of error rates for codes on burst-noise channels. Bell SystemTechnology Journal 39, 1253–1264 (1963)Google Scholar
  13. 13.
    Gao, C.: Performance and energy efficiency in wireless self-organized networks. PhD thesis, University of Vaasa (November 2009)Google Scholar
  14. 14.
    Geirhofer, S., Tong, L., Sadler, B.M.: Dynamic spectrum access in WLAN channels: Empirical model and its stochastic analysis. In: Proceedings of the First International Workshop on Technology and Policy for Accessing Spectrum, Boston, MA (2006)Google Scholar
  15. 15.
    Gilbert, E.N.: Capacity of a burst-noise channel. Bell Systems Technology Journal 39, 1253–1264 (1960)Google Scholar
  16. 16.
    Gorday, P.: 802.15.4 multipath. IEEE 803.15-4-0337-00-004b (2004)Google Scholar
  17. 17.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proceedings of the IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  18. 18.
    Holland, G., Vaidya, N.: Analysis of TCP performance over mobile ad hoc networks. Wireless Networks 8(2), 275–288 (2002)MATHCrossRefGoogle Scholar
  19. 19.
    Huang, M., Dey, S.: Stability of Kalman filtering with Markovian packet losses. Automatica 43, 598–607 (2007)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks specific requirements part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (lr-wpans). IEEE Std 802.15.4-2003 (2003)Google Scholar
  21. 21.
    IEEE recommended practice for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements part 15.2: Coexistence of wireless personal area networks with other wireless devices operating in unlicensed frequency bands. IEEE Std 802.15.2-2003 (2003)Google Scholar
  22. 22.
    ITU-R. Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900 mhz to 100 ghz. Recommendation ITU-R P.1238-6 (2009)Google Scholar
  23. 23.
    Krishnamurty, P., Arauz, J., Labrador, M.A.: Discrete rayleigh fading channel modelling. Wireless Communications and Mobile Computing 4, 413–423 (2004)CrossRefGoogle Scholar
  24. 24.
    Johansson, M., Xiao, L.: On optimal control over packet-oriented communication links. In: 38th Annual Allerton Conference on Communication, Control, and Computing, Monicello, vol. Il (October 2000)Google Scholar
  25. 25.
    Kao, C.-Y., Lincoln, B.: Simple stability criteria for systems with time-varying delays. Automatica 40(8), 1429–1434 (2004)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Kemp, A., Bryant, E.: Channel sounding of industrial sites in the 2.4 GHz ISM band. Wireless Personal Communications 31, 235–248 (2004)CrossRefGoogle Scholar
  27. 27.
    Kleinrock, L., Tobagi, F.: Packet switching in radio channels: Part I–carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications 23(12), 1400–1416 (1975)MATHCrossRefGoogle Scholar
  28. 28.
    Koumpis, K., Hanna, L., Andersson, M., Johansson, M.: Wireless industrial control and monitoring beyond cable replacement. In: Proc. 2nd PROFIBUS International Conference, Coombe Abbey, UK (June 2005)Google Scholar
  29. 29.
    Lennvall, T., Svensson, S., Hekland, F.: A comparison of Wireless HART and Zigbee for industrial applications. In: IEEE International Workshop on Factory Communication Systems, WFCS 2008, pp. 85–88 (May 2008)Google Scholar
  30. 30.
    Luck, R., Ray, A.: An observer-based compensator for distributed delays. Automatica 25(6), 903–908 (1990)CrossRefGoogle Scholar
  31. 31.
    Mahmood, A., Hossain, M.M.A., Jantti, R.: Channel ranking algorithms for cognitive coexistence of IEEE 802.15.4. In: Proc. IEEE PIMRC 2009, Tokyo, Japan (2009)Google Scholar
  32. 32.
    MacLeod, H., Loadman, C., Chen, Z.: Experimental studies of the 2.4-GHz ISM wireless indoor channel, pp. 63–68 (May 2005)Google Scholar
  33. 33.
    Marrón, P.J., Minder, D.: Embedded WiSeNts Consortium. Embedded WiSeNts research roadmap. Logos Verlag, Berlin (2006)Google Scholar
  34. 34.
    Medepalli, K., Tobagi, F.A.: Towards performance modeling of IEEE 802.11 based wireless networks: a unified framework and its applications. In: Proc. IEEE Infocom, Bercelona, Spain (April 2006)Google Scholar
  35. 35.
    Mirkin, L.: Some remarks on the use of time-varying delay to model sample-and-hold circuits. IEEE Trans. Automat. Control 52(6), 1109–1112 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Misic, J., Shafi, S., Misic, V.B.: Performance of a beacon enabled IEEE 802.15.4 cluster with downlink and uplink traffic. IEEE Trans. Parallel Distrib. Syst. 17(4), 361–376 (2006)CrossRefGoogle Scholar
  37. 37.
    Miskowicz, M., Sapor, M., Zych, M., Latawiec, W.: Performance analysis of predictive p-persistent CSMA protocol for control networks. In: 4th IEEE International Workshop on Factory Communication Systems, pp. 249–256 (2002)Google Scholar
  38. 38.
    Morse, J.: Market pulse: wireless in industrial systems: cautious enthusiasm. Industrial Embedded Systems 2(7), 10–11 (2006)Google Scholar
  39. 39.
    Nilsson, J.: Real-time control systems with delays. PhD thesis, Lund Institute of Technology, Lund, Sweden (1998)Google Scholar
  40. 40.
    Park, P., Fischione, C., Johansson, K.H.: Performance analysis of GTS allocation in beacon enabled IEEE 802.15.4. In: 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2009, pp. 1–9 (June 2009)Google Scholar
  41. 41.
    Pérez-Yuste, A.: Early developments of wireless remote control: The Telekino of Torres-Quevedo. Proceedings of the IEEE 96(1), 186–190 (2008)CrossRefGoogle Scholar
  42. 42.
    Perkins, C.E., Royer, M.E.: Ad-hoc on demand distance vector routing. In: Proc. 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans, LA, pp. 90–100 (1999)Google Scholar
  43. 43.
    Pesonen, J.: Stochastic estimation and control over Wireless HART networks: Theory and implementation. Master’s thesis, Royal Institute of Technology (February 2010)Google Scholar
  44. 44.
    Pesonen, J., Zhang, H., Soldati, P., Johansson, M.: Methodology and tools for controller-networking codesign in Wireless HART. In: Proc. 14th IEEE International Conference on Emerging Techonologies and Factory Automation, Palma di Mallorca, Spain (2009)Google Scholar
  45. 45.
    Petrova, M., Riihijarvi, J., Mahonen, P., Labella, S.: Performance study of IEEE 802.15.4 using measurements and simulations, vol. 1, pp. 487–492 (2006)Google Scholar
  46. 46.
    Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 95–107 (2004)Google Scholar
  47. 47.
    Rabi, M., Stabellini, L., Proutiere, A., Johansson, M.: Networked estimation under contention-based medium access. International Journal of Robust and Nonlinear Control (2010)Google Scholar
  48. 48.
    Rappaport, T.S.: Characterization of UHF multipath radio channels in factory buildings. IEEE Transactions on Antennas and Propagation 37(8), 1058–1069 (1989)CrossRefGoogle Scholar
  49. 49.
    Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.L.: Z-MAC: a hybrid mac for wireless sensor networks. IEEE/ACM Trans. Netw. 16(3), 511–524 (2008)CrossRefGoogle Scholar
  50. 50.
    Roberts, L.G.: Dynamic allocation of satellite capacity through packet reservation. In: Computer communication networks, Noordhoff Internat Publishing, Groningen (1972)Google Scholar
  51. 51.
    Rom, R., Sidi, M.: Multiple access protocols – performance and analysis. Springer, Heidelberg (1989), http://webee.technion.ac.il/people/rom/PDF/MAP.pdf Google Scholar
  52. 52.
    Royer, E.M., Toh, C.-K.: A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications, 46–55 (April 1999)Google Scholar
  53. 53.
    Jantti, R., Nethi, S., Nassi, V.: Time and antenna diversity in wireless sensor and actuator networks. In: Proc. IEEE MICC 2009, Kuala Lumpur, Malaysia (2009)Google Scholar
  54. 54.
    Schenato, L.: Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Transactions on Automatic Control 53(5), 1311–1317 (2008)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of control and estimation over lossy networks. Proceedings of the IEEE 95(1), 163–187 (2007)CrossRefGoogle Scholar
  56. 56.
    Sikora, A., Groza, V.F.: Coexistence of IEEE 802.15.4 with other systems in the 2.4 GHz ISM band, vol. 3, pp. 1786–1791 (2005)Google Scholar
  57. 57.
    Soldati, P., Zhang, H., Johansson, M.: Deadline-constrained transmission scheduling and data evacuation in Wireless HART networks. In: Proc. European Control Conference, Budapest, Hungary (September 2009)Google Scholar
  58. 58.
    Soldati, P., Zhang, H., Zou, Z., Johansson, M.: Optimal routing and scheduling of deadline-constrained traffic over lossy networks. In: IEEE Globecom 2010, Miami, Florida (2010)Google Scholar
  59. 59.
    Kemp, A., Bryant, E.: Channel sounding of industrial sites in the 2.4 GHz ism band. Wireless Personal Communications 31, 235–248 (2004)CrossRefGoogle Scholar
  60. 60.
    Stabellini, L.: Design of reliable communication solutions for wireless sensor networks, Licentate Thesis. Technical report, Royal Institute of Technology, KTH (2009)Google Scholar
  61. 61.
    Stabellini, L.: Quantifying and modeling spectrum opportunities in a real wireless environment. In: Proc. IEEE WCNC 2010, Sydney, Australia (April 2010)Google Scholar
  62. 62.
    Stabellini, L., Proutiere, A.: Evaluating delay and energy in sensor networks with sporadic and correlated traffic. In: The 7th Scandinavian Workshop on Wireless Ad-hoc and Sensor Networks, Stockholm, Sweden (2009)Google Scholar
  63. 63.
    Tanghe, E., Joseph, W., Verloock, L., Martens, L., Capoen, H., Van Herwegen, K., Vantomme, W.: The industrial indoor channel: large-scale and temporal fading at 900, 2400, and 5200 MHz. IEEE Transactions on Wireless Communications 7(7), 2740–2751 (2008)CrossRefGoogle Scholar
  64. 64.
    Tipsuwan, Y., Chow, M.-Y.: Control methodologies in networked control systems. Control Engineering Practice, Special Section on Control Methods for Telecommunication 11(10), 1099–1111 (2003)Google Scholar
  65. 65.
    Vuran, M.C., Akyildiz, I.F.: Error control in wireless sensor networks: A cross layer analysis. IEEE/ACM Transactions on Networking 17(4), 1186–1199 (2009)CrossRefGoogle Scholar
  66. 66.
    Wang, C., Sohraby, K., Li, B., Daneshmand, M., Hu, Y.: A survey of transport protocols for wireless sensor networks. IEEE Network 20(3), 34–40 (2006)CrossRefGoogle Scholar
  67. 67.
    Wang, H.S., Moayeri, N.: Finite-state Markov channel-a useful model for radio communication channels. IEEE Transactions on Vehicular Technology 44(1), 163–171 (1995)CrossRefGoogle Scholar
  68. 68.
    Willig, A.: A new class of packet- and bit-level models for wireless channels. In: The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 5, pp. 2434–2440 (September 2002)Google Scholar
  69. 69.
    Woo, A., Tong, T., Culler, D.: Taming the underlying challenges in reliable multihop routing in sensor networks. In: ACM Sensys, Los Angeles, CA (2003)Google Scholar
  70. 70.
    Xiao, L., Hassibi, A., How, J.P.: Control with random communication delays via a discrete-time jump system approach. In: Proceedings of the 2000 American Control Conference, vol. 3, pp. 2199–2204 (2000)Google Scholar
  71. 71.
    Xu, K., Gerla, M., Bae, S.: How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In: Global Telecommunications Conference. IEEE GLOBECOM 2002, vol. 1, pp. 72–76 (November 2002)Google Scholar
  72. 72.
    Xu, S., Saadawi, T.: Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks. IEEE Communications Magazine (June 2001)Google Scholar
  73. 73.
    Yang, Y., Yum, T.-S.P.: Delay distributions of slotted ALOHA and CSMA. IEEE Transactions on Communications 51(11), 1846–1857 (2003)CrossRefGoogle Scholar
  74. 74.
    Jamieson, K., Tay, Y.C., Balakrishnan, H.: Collision-minimizing CSMA and its applications to wireless sensor networks. IEEE Journal on Selected Areas in Communications 22(6), 1048–1057 (2004)CrossRefGoogle Scholar
  75. 75.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking 12(3), 493–506 (2004)CrossRefGoogle Scholar
  76. 76.
    Zou, Z., Soldati, P., Zhang, H., Johansson, M.: Delay-constrained maximum-reliability routing over lossy links. In: IEEE Conference on Decision and Control, Atlanta, GA (December 2010)Google Scholar
  77. 77.
    Winter, T., Thubert, P. (eds.), The ROLL Team: RPL. IPv6 Routing Protocol for Low power and Lossy Networks. Internet Draft draft-ietf-roll-rpl-06 (work in progress)Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Mikael Johansson
    • 1
  • Riku Jäntti
    • 2
  1. 1.School of Electrical EngineeringKTHStockholmSweden
  2. 2.Department of Communications and NetworkingComnet Helsinki University of Technology TKKFinland

Personalised recommendations