Algebraic Reconstruction Techniques



The group of algorithms known by their initials algebraic reconstruction techniques (ARTs) is the second most popular family of reconstruction methods. However, ART techniques belong in turn to a broader methodology, which makes use of finite series expansion [4, 5, 15, 16, 18].


Reconstructed Image Reconstruction Algorithm Markov Random Field Projection System Adaptive Statistical Iterative Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique: a new implementation of the ART algorithm. Ultrason Imaging 6:81–94CrossRefGoogle Scholar
  2. 2.
    Bouman C, Sauer K (1993) A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process 2(3):296–310CrossRefGoogle Scholar
  3. 3.
    Bouman C, Sauer K (1996) A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans Image Process 5(3):480–492CrossRefGoogle Scholar
  4. 4.
    Censor Y (1981) Row-action methods for huge and sparse systems and their applications. SIAM Rev 23(3):444–464CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Censor Y (1983) Finite series-expansion reconstruction methods. Proc IEEE 71:409–419CrossRefGoogle Scholar
  6. 6.
    Chazan D, Miranker W (1969) Chaotic relaxation. Linear Algebra Appl 2:199–222CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    DeMan B, Basu S (2004) Distance-driven projection and backprojection in three dimensions. Phys Med Biol 49:2463–2475CrossRefGoogle Scholar
  8. 8.
    Eggermont PPB, Herman GT, Lent A (1981) Iterative algorithms for large partitioned linear systems, with application to image reconstruction. Linear Algebra Appl 40:37–67CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Geman S, McClure D (1985) Bayesian image analysis: an application to single photon emission tomography. in: Proceedings of the statistical computing section. American statistical association, pp 12–18Google Scholar
  10. 10.
    Geman S, McClure D (1987) Statistical methods for tomographic image reconstruction. Bull Int Stat Inst LII-4 5–21Google Scholar
  11. 11.
    Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481CrossRefGoogle Scholar
  12. 12.
    Grimmett GR (1973) A theorem about random fields. Bull London Math Soc 5:81–84CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gubarieny N (1999) Generalized model of asynchronous iterations for image reconstruction. Proc Confer PPAM’99, Kazimierz DolnyGoogle Scholar
  14. 14.
    Hara AK, Paden RG, Silva AC, Kujak J, Lawder HJ, Pavlicek W (2010) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193(9):764–771Google Scholar
  15. 15.
    Herman GT, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294CrossRefGoogle Scholar
  16. 16.
    Herman GT (1980) Image reconstruction from projections: the fundamentals of computerized tomography. Academic Press, New YorkMATHGoogle Scholar
  17. 17.
    Jähne B (1991) Digital image processing: concepts, algorithms and scientific applications. Springer, BerlinGoogle Scholar
  18. 18.
    Jain AK (1989) Fundamentals of digitals image processing. Prentice-Hall, Englewood CliffsGoogle Scholar
  19. 19.
    Kak AC, Slanley M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkMATHGoogle Scholar
  20. 20.
    Kaczmarz S (1937) Angenäherte Auflösung von Systemen linearer Gleichungen. Bull Acad Polon Sci Lett 35:355–357Google Scholar
  21. 21.
    Saquib SS, Bouman CA, Sauer K,(1998) ML parameter estimation for Markov random fields with application to Bayesian tomography. IEEE Trans Image Process 7(7):1029–1044CrossRefGoogle Scholar
  22. 22.
    Sauer K, Bouman C (1992) Bayesian estimation of transmission tomograms using segmentation based otimization. IEEE Trans Nucl Sci 39(4):1144–1152CrossRefGoogle Scholar
  23. 23.
    Sauer K, Bouman C (1993) A local update strategy for iterative reconstruction from projections. IEEE Trans Signal Process 41(2):534–548CrossRefMATHGoogle Scholar
  24. 24.
    Tanabe K (1971) Projection method for solving a singular system of linear equations and its applications. Numer Math 17:203–214CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Thibault J-B, Sauer K, Bouman C (2000) Newton-style optimization for emission tomographic estimation. J Electron Imag 9(3):269–282CrossRefGoogle Scholar
  26. 26.
    Thibault J-B, Sauer KD, Bouman CA, Hsieh J (2006) A recursive filter for noise reduction in statistical iterative tomographic imaging. SPIE 6065Google Scholar
  27. 27.
    Thibault J-B, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11):4526–4544CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Computer EngineeringTechnical University of CzestochowaCzestochowaPoland

Personalised recommendations