Advertisement

Spiral Tomography

  • Robert Cierniak
Chapter

Abstract

Since the beginning of the 1990s, the use of spiral tomography scanners has been increasingly widespread [7, 35, 44, 54]. The name comes from the shape of the path that the X-ray tube and its associated detector array follow with respect to the patient. In the English-language literature, there is still some debate concerning the choice of name for this type of device: helical or spiral tomography scanner. The spiral path of the projection system as it rotates around the patient is the result of a combination of two types of movement: a longitudinal translation of the table with the patient on it and a rotary movement of the projection system around the longitudinal axis of the patient. This type of path could not have been achieved if it had not been for the development of slip rings in 1985. These rings enabled the supply of high voltage electricity to the X-ray tube through special brushes that allowed the continuous rotation of the projection system around the patient [12, 14].

Keywords

Linear Interpolation Reconstruction Algorithm Projection System Global Coordinate System Reconstructed Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aradate H, Nambu K (1990) Computed tomography apparatus. Japanese Patent No. 2,825,352 (1990)Google Scholar
  2. 2.
    Arenson JS, Levinson R, Fruendlich D (1993) Dual sclice scanner. US Patent No. 5,228,069Google Scholar
  3. 3.
    Bresler Y, Skrabacz CJ (1989) Optimal interpolation in helical scan computed tomography. Proc ICASSP 3:1472–1475Google Scholar
  4. 4.
    Bruder H, Kachelrieß M, Schaller S et al (2000a) Single-slice rebinning reconstruction in spiral cone-beam computed tomography. IEEE Trans Med Imaging 9:873–887Google Scholar
  5. 5.
    Bruder H, Kachelrieß M, Schaller S et al (2000b) Performance of approximate cone-beam reconstruction in multislice spiral computed tomography. Proc SPIE Med Imaging Conf 3979:541–555Google Scholar
  6. 6.
    Chen L, Liang Y, Heuscher DJ (2003) General surface reconstruction for cone-beam multislice spiral computed tomography. Med Phys 30(10):2804–2821CrossRefGoogle Scholar
  7. 7.
    Crawford CR, King KF (1990) Computer tomography scanning with simultaneous patient translation. Med Phys 17(6):967–981CrossRefGoogle Scholar
  8. 8.
    Danielsson PE, Edholm P, Ericsson J et al (1997) Toward exact 3D-reconstruction for helical scanning of long object. A new detector arrangement and new completeness condition. In: Proceedings of international meeting on Fully 3D image reconstruction, pp 141–144Google Scholar
  9. 9.
    Danielsson PE, Edholm P, Ericsson J et al (1999) The original PI-method for helical cone-beam CT. In: Proceedings of international meeting on Fully 3D image reconstruction, pp 3–6Google Scholar
  10. 10.
    Defrise M, Clack R (1994) A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection. IEEE Trans Med Imaging 13:186–195CrossRefGoogle Scholar
  11. 11.
    Defrise M, Noo F, Kudo H (2000) A solution to the long-object problem in helical cone-beam tomography. Phys Med Biol 45:623–643CrossRefGoogle Scholar
  12. 12.
    Dinwiddie KL, Friday RG, Racz JA et al (1980) Tomographic scanning apparatus having detector signal digitizing means mounted to rotate with detectors. US Patent No 4,190,772Google Scholar
  13. 13.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619CrossRefGoogle Scholar
  14. 14.
    Filipczak PA (1961) Slip ring assembly for high voltages. US Patent No. 2,979,685Google Scholar
  15. 15.
    Fuchs T, Krause J, Schaller S et al (2000) Spiral interpolation algorithms for multislice spiral CT—part II: measurement and evaluation of slice sensivity profiles and noise at a clinical multislice system. IEEE Trans Med Imaging 19(9):835–847CrossRefGoogle Scholar
  16. 16.
    Grangeat P (1991) Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform. In: Herman GT, Louis AK, Natterer F (eds) Mathematical methods in thomography. Lecture Notes in Mathematics 1497. Springer, BerlinGoogle Scholar
  17. 17.
    Gullberg GT, Zeng GL, Christian PE et al (1991) Single photon emission computed tomography of the heart using cone beam geometry and noncircular detector rotation. In: Proceedings of 11th international conference on Information processing in medical imaging, pp 123–138Google Scholar
  18. 18.
    Gullberg GT, Zeng GL (1992) A cone-beam filtered backpropagation reconstruction algorithm for cardiac single photon emission computed tomography. IEEE Trans Med Imaging 11(1):91–101CrossRefGoogle Scholar
  19. 19.
    Hein IA, Taguchi K, Mori I et al (2003a) Tilted helical Feldkamp cone-beam reconstruction algorithm for multislice CT. Proc SPIE Int Symp Med Imaging 5032:1901–1910Google Scholar
  20. 20.
    Hein IA, Taguchi K, Silver MD (2003b) Feldkamp-based cone-beam reconstruction for gantry-tilted helical multislice CT. Med Phys 30(12):3233–3242Google Scholar
  21. 21.
    Heuscher DJ (1999) Helical cone beam scans using oblique 2D surface reconstructions. In: Proceedings of international meeting on Fully 3D image reconstruction, pp 204–207Google Scholar
  22. 22.
    Heuscher DJ, Lindstrom WW, Tuy HK (1996) Multiple detector ring spiral scanner with relatively adjustable helical paths. US Patent No. 5,485,492Google Scholar
  23. 23.
    Hsieh J (2000) Tomographic reconstruction for tilted helical multislice CT. IEEE Trans Med Imaging 19(9):864–872CrossRefGoogle Scholar
  24. 24.
    Hsieh J, Hu H (2001) A frequency domain compensation scheme for multi-slice helical CT reconstruction with tilted gantry. Proc SPIE 4322:105–112CrossRefGoogle Scholar
  25. 25.
    Hu H (1996) An improved cone-beam reconstruction algorithm for the circular orbit. J Scanning Microsc 18:572–581CrossRefGoogle Scholar
  26. 26.
    Hu H (1999) Multi-slice helical CT: scan and reconstruction. Med Phys 26(1):5–18CrossRefMATHGoogle Scholar
  27. 27.
    Hu H, Shen Y (1998) Helical CT reconstruction with longitudinal filtration. Med Phys 25:2130CrossRefGoogle Scholar
  28. 28.
    Kachelrieß M, Kalender WA (2002) Extended parallel backprojection for cardiac cone-beam CT for up to 128 slices. Radiology 225(P):310Google Scholar
  29. 29.
    Kachelrieß M, Schaller S, Kalender WA (2000a) Advanced single-slice rebinning in cone-beam spiral CT. Med Phys 27(4):754–773Google Scholar
  30. 30.
    Kachelrieß M, Schaller S, Kalender WA (2000b) Advanced single-slice rebinning in cone-beam spiral CT. Proc SPIE Med Imaging Conf 3979:494–505Google Scholar
  31. 31.
    Kachelrieß M, Fuchs T, Schaller S et al (2001) Advanced single-slice rebinning for tilted spiral cone-beam CT. Med Phys 28(6):1033–1041CrossRefGoogle Scholar
  32. 32.
    Kachelrieß M, Knaup M, Kalender WA (2004) Extended parallel backprojection for standard three-dimensional and phase-correlated four-dimensional axial and spiral cone-beam CT with arbitrary pitch, arbitrary cone-angle, and 100% dose usage. Med Phys 31:1623–1641CrossRefGoogle Scholar
  33. 33.
    Kak AC, Slanley M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkMATHGoogle Scholar
  34. 34.
    Kalender WA (2003) Computed tomography: fundamentals, system technology, image quality. Wiley, New York (2003)Google Scholar
  35. 35.
    Kalender WA, Seissler W, Klotz E et al (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176:181–183CrossRefGoogle Scholar
  36. 36.
    Kirillov AA (1961) On a problem of I. M. Gel’fand. Sov Math Dokl 2:268–269MathSciNetGoogle Scholar
  37. 37.
    Kudo H, Saito T (1994) Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits. IEEE Trans Med Imaging 13:196–211CrossRefGoogle Scholar
  38. 38.
    Kudo H, Noo F, Defrise M (1998) Cone-beam filtered-backpropagation algorithm for truncated helical data. Phys Med Biol 43:2885–2909CrossRefGoogle Scholar
  39. 39.
    Kudo H, Noo F, Defrise M (2000) Quasi-exact filtered backpropagation algorithm for long-object problem in helical cone-beam tomography. IEEE Trans Med Imaging 19:902–921CrossRefGoogle Scholar
  40. 40.
    Larson GL, Ruth CC, Crawford CR (1998) Nutating slice image reconstruction. Patent Appl WO 98/44847Google Scholar
  41. 41.
    Lee SW, Wang G (2003) A Grangeat-type half-scan algorithm for cone-beam CT. Med Phys 30:689–700CrossRefGoogle Scholar
  42. 42.
    Lewitt RM (1983) Reconstruction algorithms: transform methods. Proc IEEE 71(3):390–408CrossRefGoogle Scholar
  43. 43.
    Liang Y, Kruger RA (1996) Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys 23:205–220CrossRefGoogle Scholar
  44. 44.
    Nishimura H, Miyazaki O (1988) CT system for spirally scanning subject on a movable bed synchronized to X-ray tube revolution. US Patent No. 4,789,929Google Scholar
  45. 45.
    Noo F, Heuscher DJ (2002) Image reconstruction from cone-beam data on a circular short-scan. Proc SPIE 4684:50–59CrossRefGoogle Scholar
  46. 46.
    Noo F, Defrise M, Clackdoyle R (1999) Single-slice rebinning method for helical cone-beam CT. Phys Med Biol 44:561–570CrossRefGoogle Scholar
  47. 47.
    Pelc NJ, Glover GH (1986) Method for reducing image artifacts due to projection measurement inconsistencies. US Patent No. 4,580,219Google Scholar
  48. 48.
    Proska R, Köhler T, Grass M, Timmer J (2000) The n-Pi method for helical cone-beam CT. IEEE Trans Med Imaging 19:848–863CrossRefGoogle Scholar
  49. 49.
    Schaller S, Flohr T, Steffen P (1997) New, efficient Fourier-reconstruction method for approximate image reconstruction in spiral cone-beam CT at small cone-angles. Proc SPIE Med Imaging Conf 3032:213–224CrossRefGoogle Scholar
  50. 50.
    Schaller S, Noo F, Sauer F et al (1999) Exact radon rebinning algorithm for long object problem in helical cone-beam CT. In: Proceedings of international meeting on Fully 3D image reconstruction, pp 11–14Google Scholar
  51. 51.
    Schaller S, Noo F, Sauer F et al (2000) Exact Radon rebinning algorithm using local region-of-interest for helical cone-beam CT. IEEE Trans Med Imaging 19:361–375 (2000a)CrossRefGoogle Scholar
  52. 52.
    Schaller S, Flohr T, Klingenbeck K et al (2000b) Spiral interpolation algorithms for multislice spiral CT—Part I: theory. IEEE Trans Med Imaging 19(9):822–834CrossRefGoogle Scholar
  53. 53.
    Schaller S, Stierstiorfer K, Bruder H et al (2001) Novel approximate approach for high-quality image reconstruction in helical cone beam CT at arbitrary pitch. Proc SPIE Med Imag Conf 4322:113–127Google Scholar
  54. 54.
    Slavin PE (1969) X-ray helical scanning means for displaying an image of an object within the body being scanned. US Patent No. 3,432,657Google Scholar
  55. 55.
    Smith BD (1985) Image reconstruction from cone-beam reconstructions: Necessary and sufficient conditions and reconstruction methods. IEEE Trans Med Imaging MI-4:14–25Google Scholar
  56. 56.
    Smith BD, Chen JX (1992) Implementation, investigation, and improvement of a novel cone-beam reconstruction method. IEEE Trans Med Imaging MI-11:260–266Google Scholar
  57. 57.
    Taguchi K (1995) X-ray computed tomography apparatus. US Patent No. 5,825,842Google Scholar
  58. 58.
    Taguchi K, Aradate H (1998) Algorithm for image reconstruction in multi-slice helical CT. Med Phys 25:550–561CrossRefGoogle Scholar
  59. 59.
    Tam KC (2000) Exact local regio-of-interest reconstruction in spiral cone-beam filtered-backpropagation CT: theory. Proc SPIE Med Imaging 3979:506–519CrossRefGoogle Scholar
  60. 60.
    Tam KC, Samarasekera S, Sauer F (1998) Exact cone-beam CT with a spiral scan. Phys Med Biol 43:847–855CrossRefGoogle Scholar
  61. 61.
    Turbell H, Danielsson PE (1999) An improved PI-method for reconstruction from helical cone-beam projections. Proc Nucl Sci Symp 2:865–868Google Scholar
  62. 62.
    Turbell H, Danielsson PE (2000) Helical cone-beam tomography. Int J Imaging Syst Technol 11(1):91–100CrossRefGoogle Scholar
  63. 63.
    Tuy HK (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43:546–552CrossRefMathSciNetGoogle Scholar
  64. 64.
    Wang G, Cheng PC (1995) Rationale of Feldkamp-type cone-beam CT. In: Proceedings of 4th international conference on Young Computer ScientistGoogle Scholar
  65. 65.
    Wang G, Vannier MW (1994) Longitudinal resolution in volumetric X-ray computerized tomography—analytical comparison between conventional and helical computerized tomography. Med Phys 21(3):429–433CrossRefGoogle Scholar
  66. 66.
    Wang G, Vannier MW (1997a) Optimal pitch in spiral computed tomography. Med Phys 24:1635–1639Google Scholar
  67. 67.
    Wang G, Vannier MW (1997b) Low-contrast resolution in volumetric x-ray CT—analytical comparison between conventional and spiral CT. Med Phys 24(3):373–376Google Scholar
  68. 68.
    Wang G, Lin T-H, Cheng P et al (1991) A general cone-beam reconstruction algorithm for X-ray microtomography. J Scanning Microsc 13(I):126–128Google Scholar
  69. 69.
    Wang G, Lin T-H, Cheng P et al (1993) A polygonal general cone-beam reconstruction algorithm. IEEE Trans Med Imaging 12(3):486–496CrossRefMathSciNetGoogle Scholar
  70. 70.
    Wang G, Lin T-H, Cheng P et al (1994) Half-scan cone-beam X-ray microtomography formula. J Scanning Microsc 16:216–220CrossRefGoogle Scholar
  71. 71.
    Weng Y, Zeng GL, Gullberg GT (1993) A reconstruction algorithm for helical cone-beam SPECT. IEEE Trans Nucl Sci 40:1092–1101CrossRefGoogle Scholar
  72. 72.
    Yan M, Cishen Z (2005) Tilted plane Feldkamp type reconstruction algorithm for spiral cone-beam CT. Med Phys 32(11):3455–3467CrossRefGoogle Scholar
  73. 73.
    Yan X, Leahy R (1992) Cone-beam tomography with circular, elliptical and spiral orbits. Phys Med Biol 37:493–506CrossRefGoogle Scholar
  74. 74.
    Zeng GL, Gullberg GT (1992) A cone-beam tomography algorithm for orthogonal circle-endline orbit. Phys Med Biol 37:563–577CrossRefGoogle Scholar
  75. 75.
    Zeng GL, Clark R, Gullberg GT (1994) Implementation of Tuy’s cone-beam inversion formula. Phys Med Biol 39:493–507CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Computer EngineeringTechnical University of CzestochowaCzestochowaPoland

Personalised recommendations