The Physics of Data Acquisition

  • Robert Cierniak


The chance discovery of X-rays, followed by deeper understanding of their nature, properties and methods of generation led not only to the creation of devices to perform standard X-ray photographs (see Fig. 4.1) and mammograms but also to the creation of radiotherapy devices and the development of computed tomography.


Radiation Intensity Attenuation Coefficient Test Object Radiation Detector Projection System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal BK (1979) X-ray spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computer tomography. Phys Med Biol 21:733–744CrossRefGoogle Scholar
  3. 3.
    Brooks RA, DiChiro G (1976) Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 21:689–732CrossRefGoogle Scholar
  4. 4.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Addison-Wesley, ReadingGoogle Scholar
  5. 5.
    Duerinckx AJ, Macovski A (1978) Polychromatic streak artifacts in computed tomography images. J Comp Assist Tomogr 2:481–487CrossRefGoogle Scholar
  6. 6.
    Glover GH, Pelc NJ (1980) Nonlinear partial volume artifacts in X-ray computed tomography. Med Phys 7(3):238–248CrossRefGoogle Scholar
  7. 7.
    Glover GH, Pelc NJ (1981) An algorithm fot the reduction of metal clip artifacts in CT reconstructions. Med Phys 8:799–807CrossRefGoogle Scholar
  8. 8.
    Glover GH (1982) Compton scatter effects in CT reconstructions. Med Phys 9(6):860–867CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jain AK (1989) Fundamentals of digitals image processing. Prentice-Hall, Englewood CliffsGoogle Scholar
  10. 10.
    Joseph PM (1982) The effects of scatter in X-ray computed tomography. Med Phys 9(4):464–472CrossRefGoogle Scholar
  11. 11.
    Kak AC, Slanley M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkMATHGoogle Scholar
  12. 12.
    Kijewski PK, Bjärngard BE (1978) Correction for beam hardening in computer tomography. Med Phys 5(3):209–214CrossRefGoogle Scholar
  13. 13.
    Lonn AHR, Crawford CR (1988) Reduction of artifacts caused by metallic objects in CT. Radiology 169(P):116Google Scholar
  14. 14.
    Macovski A (1983) Physical problems of computer tomography. Proc IEEE 71(3):373–378CrossRefGoogle Scholar
  15. 15.
    McDavid WD, Waggener RG, Payne WH et al (1975) Spectral effects on three-dimentional reconstruction from X-rays. Med Phys 2:321–324CrossRefGoogle Scholar
  16. 16.
    Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften (Leipzig) 69:262–277Google Scholar
  17. 17.
    Rontó G, Tarjan I (1999) An introduction to biophysics with medical orientation. Akademiai Kiado, BudapestGoogle Scholar
  18. 18.
    Snyder DL, O’Sullivan JA, Whiting BR et al (2001) Deblurring subject to nonnegativity constraints when known functions are present with application to object-constrained computerized tomography. IEEE Trans Med Imaging 20(10):1009–1017CrossRefGoogle Scholar
  19. 19.
    Suryanarayana C, Grant Norton M (1998) X-ray diffraction: a practical approach. Plenum Press, New YorkCrossRefGoogle Scholar
  20. 20.
    Wang G, Snyder DL, O’Sullivan JA et al (1996) Iterative deblurring for CT metal artifact reduction. IEEE Trans Med Imaging 15(5):657–664CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Computer EngineeringTechnical University of CzestochowaCzestochowaPoland

Personalised recommendations