Technical Concepts of X-ray Computed Tomography Scanners

  • Robert Cierniak


Medical examinations using computed tomography are currently standard hospital practice. Back in the 1980s, its use was relatively rare, and was available only in a limited number of specialised medical centres. Today it is hard to imagine medical diagnosis without it.


Hounsfield Unit Projection System Semiconductor Detector Spiral Scanner Spiral Compute Tomography Scanner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arenson JS, Levinson R, Fruendlich D (1993) Dual slice scanner. U.S. Patent No. 5,228,069Google Scholar
  2. 2.
    Arenson JS (1995) Data collection strategies: gantries and detectors. In: Goldman LW, Fowlkes JB (eds) Medical CT and Ultrasound. Advanced Medical PublishingGoogle Scholar
  3. 3.
    Buzug TM (2008) From photon statistics to modern cone-beam CT. Springer, BelinGoogle Scholar
  4. 4.
    Child CD (1911) Phys Rev (Series I) 32:492CrossRefGoogle Scholar
  5. 5.
    Cline HE, Dumoulin CL, Hart HR et al (1987) 3D reconstruction of the brain from magnetic resonanse images using a connectivity algorithm. Magn Reson Imag 5:345–352CrossRefGoogle Scholar
  6. 6.
    Elvins TT (1992) A survey of algorithm for volume visualization. Comput Graph 26(3):194–201CrossRefGoogle Scholar
  7. 7.
    Fox SH (1997) A review of available solid state CT detector materials. General Electric Comp Publ 97–5175, Milwaukee, WIGoogle Scholar
  8. 8.
    Fuchs T, Kachelrieß M, Kalender WA (2000) Direct comparison of a xenon and a solid-state CT detector system: measurements under working conditions. IEEE Trans Med Imag 19(9):941–948CrossRefGoogle Scholar
  9. 9.
    Gonzalez RC, Woods RE (1992) Digital image processing. Addison-Wesley, ReadingGoogle Scholar
  10. 10.
    Greskovich CD, Cusano D, Hoffman D et al (1992) Ceramic scintillators for advanced, medical X-ray detectors. Am Ceramic Soc Bull 71:1120–1130Google Scholar
  11. 11.
    Greskovich CD, Cusano D (1997) Ceramic scintillators. Annu Rev Mater Sci 27:69–88CrossRefGoogle Scholar
  12. 12.
    Haar T, Klingenbeck-Regn K, Hupke R (1998) Improvement of CT performance by UFC detector technology. In: Krestin GP, Glazer GM (eds) Advances in CT. In: Proceedings of 4th international Somatom Plus CT sci user conference, RotterdamGoogle Scholar
  13. 13.
    Hahn G, Hupke R, Kohl G et al (1997) Ultra-fast detector for computed tomograph. Res Innov 1:15–22Google Scholar
  14. 14.
    Heuscher DJ, Lindstrom WW, Tuy HK (1996) Multiple detector ring spiral scanner with relatively adjustable helical paths. U.S. Patent No. 5,485,492Google Scholar
  15. 15.
    Hsieh J, Gurmen OE, King KF (2000) Investigation of a solid-state detector for advanced computed tomography. IEEE Trans Med Imag 19(9):930–940CrossRefGoogle Scholar
  16. 16.
    Jain AK (1989) Fundamentals of Digitals Image Processing. Prentice-Hall, Englewood CliffsGoogle Scholar
  17. 17.
    Kak AC, Slanley M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkMATHGoogle Scholar
  18. 18.
    Kalender WA (2009) Computed tomography: fundamentals, system technology. Image quality. Wiley, New YorkGoogle Scholar
  19. 19.
    King KF, Crawford CR (1993) Compensation of computed tomograpfy data for X-ray detector afterglow artifacts. U.S. Patent 5,265,013Google Scholar
  20. 20.
    Kopp AF, Klingenbeck-Regn K, Heuschmid M et al (2000) Multislice computed tomography: Basic principles and clinical applications. Electromed 68(2):94–105Google Scholar
  21. 21.
    Kudo H, Noo F, Defrise M (1998) Cone-beam filtered-backpropagation algorithm for truncated helical data. Phys Med Biol 43:2885–2909CrossRefGoogle Scholar
  22. 22.
    Lakshminarayanan AV (1975) Reconstruction from divergent ray data. Tech Rep TR-92, Department of Computer Science, State University of New York, Buffalo, New YorkGoogle Scholar
  23. 23.
    Langmuir I (1913) Phys Rev 2:450CrossRefGoogle Scholar
  24. 24.
    Magnusson M, Lez R, Danielsson P-E (1991) Evoluation of methods for shaded Surface Display of CT volumes. Comput Med Imag Graph 15(4):247–225CrossRefGoogle Scholar
  25. 25.
    Nishimura H, Miyazaki O (1988) CT system for spirally scanning subject on a movable bed synchronized to X-ray tube revolution. U.S. Patent No. 4,789,929Google Scholar
  26. 26.
    Ohnesorge B, Flohr T, Schaller S (1999) Technische Grundlagen und Anwendungen der Mehrschicht CT. Radiology 39:923–931CrossRefGoogle Scholar
  27. 27.
    Peschmann KR, Couch JL, Parker DL (1981) New developments in digital X-ray detection. SPIE 314:50–54Google Scholar
  28. 28.
    Peschmann KR (1981) Xeneon gas ionization detectors. In: Newton TH, Potts DG (eds) Radiology of the scull and brain: technical aspects of computed tomography. Mosby, Saint LouisGoogle Scholar
  29. 29.
    Rontó G, Tarjan I (1999) An introduction to biophysics with medical orientation. Akademiai Kiado, BudapestGoogle Scholar
  30. 30.
    Rossner W, Bödinger H, Leppert J et al (1993) The conversion of high energy radiation to visible light by luminescent ceramics. IEEE Trans Nucl Sci NS-40:376–379Google Scholar
  31. 31.
    Schaller S, Flohr T, Klingenbeck K et al (2000) Spiral interpolation algorithms for multislice spiral CT—Part I: Theory. IEEE Trans Med Imag 19(9):822–834CrossRefGoogle Scholar
  32. 32.
    Schwierz G, Lichtenberg W, Fuhrere K (1980) Influence of the focal spot on CT Image quality. Electromed 4:134–139Google Scholar
  33. 33.
    Taguchi K (1975) U.S. Patent No. 5,825,842Google Scholar
  34. 34.
    Wilson O, Gelder van A, Wilhelms J (1994) Direct volume rendering via 3D textures. Tech Rep USCS-CRL-94-19Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Computer EngineeringTechnical University of CzestochowaCzestochowaPoland

Personalised recommendations