Skip to main content

Modeling and Optimization of Rapid Prototyping Processes

  • Chapter
  • First Online:
Advanced Modeling and Optimization of Manufacturing Processes

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

In a competitive market, the speed with which a product flows from concept to marketable product plays a crucial role. It is well known that products that are introduced before their competitors are generally more profitable and enjoy a larger share of the market. At the same time, there are important concerns regarding the production of high-quality products. For these reasons, there is a concerted effort to bring high-quality products to market quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257

    Article  Google Scholar 

  2. Allen S, Dutta D (1994) On the computation of part orientation using support structures in layered manufacturing. Technical report UM-MEAM-TR-94-15. Dept Mech Eng, Univ Michigan, Ann Arbour

    Google Scholar 

  3. Ancău M, Caizar C (2010) The computation of Pareto-optimal set in multicriterial optimization of rapid prototyping processes. Comput Ind Eng. doi:10.1016/j.cie.2010.01.015

  4. Byun HS, Lee KH (2006) Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making. Rob Comput Integr Manuf 22(1):69–80

    Article  Google Scholar 

  5. Canellidis V, Giannatsis J, Dedoussis V (2009) Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography. Int J Adv Manuf Technol 45(7–8):714–730

    Article  Google Scholar 

  6. Chen CC, Sullivan PA (1996) Predicting total build-time and the resultant cure depth of the 3D stereolithography process. Rapid Prototyp J 2(4):27–40

    Article  Google Scholar 

  7. Cheng W, Fuh JYH, Nee AYC, Wong YS, Loh HT, Miyazawa T (1995) Multi-objective optimization of part-building orientation in stereolithography. Rapid Prototyp J 1(4):12–23

    Article  MATH  Google Scholar 

  8. Chockalingam K, Jawahar N, Ramanathan KN, Banerjee PS (2006) Optimization of stereolithography process parameters for part strength using design of experiments. Int J Adv Manuf Technol 29(1–2):79–88

    Article  Google Scholar 

  9. Choi SH, Samavedam S (2002) Modeling and optimization of rapid prototyping. Comput Ind 47(1):39–53

    Article  Google Scholar 

  10. Frank D, Fadel G (1995) Expert system-based selection of the preferred direction of build for rapid prototyping processes. J Intell Manuf 6(5):339–345

    Article  Google Scholar 

  11. Grujicic M, Hu Y, Fadel GM, Keicher DM (2001) Optimization of the LENS rapid fabrication process for in-flight melting of feed powder. J Mater Synth Process 9(5):223–233

    Article  Google Scholar 

  12. Haipeng P, Tianrui Z (2007) Generation and optimization of slice profile data in rapid prototyping and manufacturing. J Mater Process Technol 187(188):623–626

    Article  Google Scholar 

  13. Hardjadinata G, Doumanidis CC (2001) Rapid prototyping by laser foil bonding and cutting: thermomechanical modeling and process optimization. J Manuf Process 3(2):108–119

    Article  Google Scholar 

  14. Harris R, Hopkinso N, Newlyn H, Hague R, Dickens P (2002) Layer thickness and draft angle selection for stereolithography injection mould tooling. Int J Prod Res 40(3):719–729

    Article  MATH  Google Scholar 

  15. Hu Z, Lee K, Hur J (2002) Determination of optimal build orientation for hybrid rapid-prototyping. J Mater Process Technol 130–131:378–383

    Google Scholar 

  16. Hur J, Lee K (1998) The development of a CAD environment to determine the preferred build-up direction for layered manufacturing. Int J Adv Manuf Technol 14:247–254

    Article  Google Scholar 

  17. Khan ZA, Lee BH, Abdullah J (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169:54–61

    Article  Google Scholar 

  18. Kim JY, Lee K, Park JC (1994) Determination of optimal part orientation in stereolithographic rapid prototyping. Technical report, Dept Mech Des Prod Eng, Seoul Nat Univ, Seoul

    Google Scholar 

  19. Lan H (2009) Web-based rapid prototyping and manufacturing systems: a review. Comput Ind 60(9):643–656

    Article  MathSciNet  Google Scholar 

  20. Lan PT, Chou SY, Chent LL, Gemmill D (1997) Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Comput Aided Des 29(1):53–62

    Article  Google Scholar 

  21. Lee BH, Abdullah J, Khan ZA (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169(1):54–61

    Article  Google Scholar 

  22. Lee CS, Kim SG, Kim HJ, Ahn SH (2007) Measurement of anisotropic compressive strength of rapid prototyping parts. J Mater Process Technol 187–188:627–630

    Article  Google Scholar 

  23. Li X (2009) Multi-object optimal design of rapid prototyping based on uniform experiment. Tsinghua Sci Technol 14(1):206–211

    Article  Google Scholar 

  24. Majumdar JD, Pinkerton A, Liu Z, Manna I, Li L (2005) Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel. Appl Surf Sci 247(1–4):320–327

    Google Scholar 

  25. Masood SH, Rattanawong W, Iovenitti P (2003) A generic algorithm for a best part orientation system for complex parts in rapid prototyping. J Mater Process Technol 139(1–3):110–116

    Article  Google Scholar 

  26. Nagahanumaiah, Subburaj K, Ravi B (2008) Computer aided rapid tooling process selection and manufacturability evaluation for injection mold development. Comput Ind 59(2–3):262–276

    Article  Google Scholar 

  27. Nyaluke A, Nasser B, Leep HR, Parsaei HR (1996) Rapid prototyping work space optimization. Comput Ind Eng 31(1–2):103–106

    Article  Google Scholar 

  28. Oudjene M, Penazzi L, Batoz JL (2007) Towards the three-dimensional FE analysis of rapid prototyping tools for sheet metal stamping process. Finite Elem Anal Des 43(8):611–619

    Article  Google Scholar 

  29. Oudjene M, Batoz JL, Penazzi L, Mercier F (2007) A methodology for the 3D stress analysis and the design of layered sheet metal forming tools joined by screws. J Mater Process Technol 189(1–3):334–343

    Article  Google Scholar 

  30. Pandey PM, Reddy NV, Dhande SG (2003a) Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf 43(1):61–71

    Article  Google Scholar 

  31. Pandey PM, Reddy NV, Dhande SG (2003b) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 132(1–3):323–331

    Article  Google Scholar 

  32. Pham DT, Dimov DT, Gault RS (1999) Part orientation in stereolithography. Int J Adv Manuf Technol 15:674–682

    Article  Google Scholar 

  33. Rezende R, Rezende M, Bártolo P, Mendes A, Filho RM (2009) Optimization of scaffolds in alginate for biofabrication by genetic algorithms. Comput Aided Chem Eng 27:1935–1940

    Article  Google Scholar 

  34. Rozman R, Kmetec B, Podobnik B, Kovačič D, Govekar E (2008) Optimization of direct laser structuring of printed circuit boards. Appl Surf Sci 254(17):5524–5529

    Article  Google Scholar 

  35. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modeling processed parts. Mater Des 31(1):287–295

    Article  Google Scholar 

  36. Sreeram PN, Dutta D (1994) Determination of optimal orientation based on variable slicing thickness in layered manufacturing. Technical report UM-MEAM-TR-94-14. Dept Mech Eng, Univ Michigan, Ann Arbour

    Google Scholar 

  37. Steen WM (1998) Laser material processing. Springer-Verlag, Berlin

    Google Scholar 

  38. Vosniakos GC, Maroulis T, Pantelis D (2007) A method for optimizing process parameters in layer-based rapid prototyping. Proc Inst Mech Eng Part B J Eng Manuf 221(8):1329–1340

    Article  Google Scholar 

  39. Williams RE, Komaragiri SN, Melton VL, Bishu RR (1996) Investigation of the effect of various build methods on the performance of rapid prototyping (stereolithography). J Mater Process Technol 61(1–2):173–178

    Article  Google Scholar 

  40. Xiaomin C, Feng C, Wei Y (2006) Prototyping direction optimization of points data oriented rapid prototyping based on genetic algorithm. In: Wang ED (ed) Simulated evolution and learning. Springer-Verlag, Berlin

    Google Scholar 

  41. Yang Y, Fuh JYH, Loh HT, Wong YS (2003) Multi-orientational deposition to minimize support in the layered manufacturing process. J Manuf Syst 22(2):116–129

    Article  Google Scholar 

  42. Zhang X, Zhou B, Zeng Y, Gu P (2002) Model layout optimization for solid ground curing rapid prototyping processes. Rob Comput Integr Manuf 18(1):41–51

    Article  Google Scholar 

  43. Zhou JG, Herscovici D, Chen CC (2000) Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts. Int J Mach Tools Manuf 40(3):363–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkata Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Venkata Rao, R. (2011). Modeling and Optimization of Rapid Prototyping Processes. In: Advanced Modeling and Optimization of Manufacturing Processes. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-015-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-015-1_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-014-4

  • Online ISBN: 978-0-85729-015-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics