Modeling and Optimization of Modern Machining Processes

Part of the Springer Series in Advanced Manufacturing book series (SSAM)


AWJM process uses a high velocity water jet in combination with abrasive particles for cutting different types of materials using a setup as shown in Fig. 3.1. A stream of small abrasive particles is introduced and entrained in the water jet in such a manner that water jet’s momentum is partly transferred to the abrasive particles. The process thus combines the benefit of the two other advanced machining processes namely, WJM and AJM. This process relies on erosive action of an abrasive laden water jet for applications of cutting, drilling, and general cleaning and descaling of thick sections of very soft to very hard materials at high rates. Visual examination of the cutting process in AWJM suggests two dominant modes of material removal. First is erosion by cutting wear due to particle impact at shallow angles on the top surface of the kerf. Second is deformation wear due to excessive plastic deformation caused by particle impact at large angles, deeper into the kerf.


Artificial Neural Network Model Material Removal Rate Electrical Discharge Machine Wire Electric Discharge Machine Grey Relational Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Acharya BG, Jain VK, Batra JL (1986) Multi-objective optimization of ECM process. Precis Eng 8:88–96CrossRefGoogle Scholar
  2. 2.
    Adam R, Maria ZS (2001) The mathematical modeling of electrochemical machining with flat ended universal electrodes. J Mater Process Technol 109:333–338CrossRefGoogle Scholar
  3. 3.
    Akkurt A, Kulekci MK, Seker U, Ercan F (2004) Effect of feed rate on surface roughness in abrasive waterjet cutting applications. J Mater Process Technol 147(3):389–396CrossRefGoogle Scholar
  4. 4.
    Almeida IA, De Rossi W, Lima MSF, Berretta JR, Nogueira GEC, Wetter NU, Vieira ND Jr (2006) Optimization of titanium cutting by factorial analysis of the pulsed Nd:YAG laser parameters. J Mater Process Technol 179(1–3):105–110CrossRefGoogle Scholar
  5. 5.
    Aloke R, Girish V, Scrutton RF, Molian PA (1997) A model for prediction of dimensional tolerances of laser cut holes in mild steel thin plates. Int J Mach Tools Manuf 37:1069–1078CrossRefGoogle Scholar
  6. 6.
    Amini S, Soleimanimehr H, Nategh MJ, Abudollah A, Sadeghi MH (2008) FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool. J Mater Process Technol 201(1–3):43–47CrossRefGoogle Scholar
  7. 7.
    Anand KN (1996) Development of process technology in wire-cut operation for improving machining quality. Total Qual Manag 7(1):11–28MathSciNetCrossRefGoogle Scholar
  8. 8.
    Armarego EA, Smith AJR, Wang J (1993) Constrained optimization strategies and CAM software for single-pass peripheral milling. Int J Prod Res 31:2139CrossRefGoogle Scholar
  9. 9.
    Arola D, Ramulu M (1997) Material removal in abrasive waterjet machining of metals. Surface integrity and texture. Wear 210(1–2):50–58CrossRefGoogle Scholar
  10. 10.
    Asokan P, Kumar PR, Jeyapaul R, Santhi M (2008) Development of multi-objective optimization models for electrochemical machining process. Int J Adv Manuf Technol 39(1–2):55–63CrossRefGoogle Scholar
  11. 11.
    Axinte DA, Srinivasu DS, Kong MC, Butler-Smith PW (2009) Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation. Int J Mach Tools Manuf 49(10):797–803CrossRefGoogle Scholar
  12. 12.
    Azmir MA, Ahsan AK (2009) A study of abrasive water jet machining process on glass/epoxy composite laminate. J Mater Process Technol 209(20):6168–6173CrossRefGoogle Scholar
  13. 13.
    Azmir MA, Ahsan AK (2008) Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. J Mater Process Technol 198(1–3):122–128CrossRefGoogle Scholar
  14. 14.
    Bandhopadhayay S, Sarin Sundar JK, Sunderajan G, Joshi SV (2002) Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti-6Al-4V sheets. J Mater Process Technol 127:83–95CrossRefGoogle Scholar
  15. 15.
    Tansel IN, Bao WY (2000) Modeling micro-end-milling operations-analytical cutting force model. Int J Mach Tools Manuf 40(15):2155–2173CrossRefGoogle Scholar
  16. 16.
    Basak I, Ghosh A (1996) Mechanism of spark generation during electrochemical discharge machining; a theoretical model and experimental verification. J Mater Process Technol 62:46–53CrossRefGoogle Scholar
  17. 17.
    Basak I, Ghosh A (1997) Mechanism of material removal in electrochemical discharge machining; a theoretical model and experimental verification. J Mater Process Technol 71:350–359CrossRefGoogle Scholar
  18. 18.
    Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) for non-conducting ceramics materials. J Mater Process Technol 95:145–154CrossRefGoogle Scholar
  19. 19.
    Bhattacharyya B, Sur B, Sorkhel SK (1973) Analysis for optimum parametric combination in electrochemical machining. CIRP Ann Manuf Technol 22:59–60Google Scholar
  20. 20.
    Bhattacharyya B, Munda J (2003) Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int J Mach Tools Manuf 43(13):1301–1310CrossRefGoogle Scholar
  21. 21.
    Bhattacharyya B, Munda J (2008) Investigation into electrochemical micromachining (EMM) through response surface methodology based approach. Int J Mach Tools Manuf 35(7-8)Google Scholar
  22. 22.
    Bhattacharyya B, Sorkhel SK (1998) Investigation for controlled electrochemical machining through response surface methodology-based approach. J Mater Process Technol 86(1–3):200–207CrossRefGoogle Scholar
  23. 23.
    Benedict GF (1987) Nontraditional manufacturing processes. Marcel Dekker, New YorkGoogle Scholar
  24. 24.
    Benkirane Y, Kremer D, Moisan A (1999) Ultrasonic machining: an analytical and experimental study on contour machining based on neural network. CIRP Ann Manuf Technol 48(1):135–138CrossRefGoogle Scholar
  25. 25.
    Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971CrossRefMATHGoogle Scholar
  26. 26.
    Bigot S, Valentinčič J, Blatnik O, Junkar M (2006) Micro-EDM parameters optimization. In: Menz W, Dimov S, Fillon B (eds) 2nd international conference on multi-material micro manufacture. Elsevier, OxfordGoogle Scholar
  27. 27.
    Bissacco G, Hansen HN, De Chiffre L (2006) Size effects on surface generation in micro-milling of hardened tool steel. Ann CIRP 55(1):593–596CrossRefGoogle Scholar
  28. 28.
    Bissacco G, Hansen HN, Slunsky J (2008) Modeling the cutting edge radius size effect for force prediction in micro-milling. CIRP Ann Manuf Technol 57(1):113–116CrossRefGoogle Scholar
  29. 29.
    Biswas R, Kuar AS, Sarkar S, Mitra S (2010) A parametric study of pulsed Nd:YAG laser micro-drilling of gamma-titanium aluminide. Opt Laser Technol 42:23–31CrossRefGoogle Scholar
  30. 30.
    Bruneel D, Matras G, Harzic RL, Huot N, König K, Audouard E (2010) Micromachining of metals with ultra-short Ti-Sapphire lasers: prediction and optimization of the processing time. Optics Lasers Eng 48(3):268–271CrossRefGoogle Scholar
  31. 31.
    Carlyle WC, Montgomery DC, Runger GC (2000) Optimization problems and methods in quality control and improvement. J Qual Technol 31:1–17Google Scholar
  32. 32.
    Çaydaş U, Hasçalık A (2008) Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics. Opt Laser Technol 40(7):987–994CrossRefGoogle Scholar
  33. 33.
    Çaydaş U, Ahmet H, Ekici S (2009) An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Syst Appl 36(3):6135–6139CrossRefGoogle Scholar
  34. 34.
    Cenna AA, Mathew P (2002) Analysis and prediction of laser cutting parameters of fibre reinforced plastics (FRP) composite materials. Int J Mach Tools Manuf 42:105–113CrossRefGoogle Scholar
  35. 35.
    Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46:313–332CrossRefGoogle Scholar
  36. 36.
    Chak S, Rao PV (2008) The drilling of Al2O3 using a pulsed DC supply with a rotary abrasive electrode by the electrochemical discharge process. Int J Adv Manuf Technol 39:633–641CrossRefGoogle Scholar
  37. 37.
    Chakravarthy PS, Babu NR (2000) A hybrid approach for selection of optimal process parameters in abrasive water jet cutting. Proc Inst Mech Eng Part B J Eng Manuf 214:781–791CrossRefGoogle Scholar
  38. 38.
    Chakravarthy PS, Babu NR (1999) A new approach for selection of optimal process parameters in abrasive water jet cutting. Mater Manuf Process 14(4):581–600CrossRefGoogle Scholar
  39. 39.
    Chang CW, Kuo CP (2007) Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. Int J Mach Tools Manuf 47(1):141CrossRefMATHGoogle Scholar
  40. 40.
    Chang T, Wysk RA, Davis RP, Choi B (1982) Milling parameter optimization through a discrete variable transformation. Int J Prod Res 20:507CrossRefGoogle Scholar
  41. 41.
    Chen L, Siores E, Wong WCK (1998) Optimising abrasive waterjet cutting of ceramic materials. J Mater Process Technol 74(1–3):251–254CrossRefGoogle Scholar
  42. 42.
    Chen HC, Lin JC, Yang YK, Tsai CH (2010) Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Syst Appl. doi: 10.1016/j.eswa.2010.04.020
  43. 43.
    Chen L, Siores E, Wong WCK (1996) Kerf characteristic in abrasive waterjet cutting of ceramic materials. Int J Mach Tools Manuf 36(11):1201–1206CrossRefGoogle Scholar
  44. 44.
    Chen MC, Tsai DM (1996) A simulated annealing approach for optimization of multi-pass turning operations. Int J Prod Res 34:2803CrossRefMATHGoogle Scholar
  45. 45.
    Chen TC, Robert B, Darling RB (2005) Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon. J Mater Process Technol 169:214–218CrossRefGoogle Scholar
  46. 46.
    Chen YH, Tam SC, Chen WL, Zheng HY (1996) Application of Taguchi method in the optimization of laser micro-engraving of photomasks. Int J Mater Prod Technol 11(3–4):333–344Google Scholar
  47. 47.
    Chiang KT, Chang FP (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. J Mater Process Technol 180(1–3):96–101CrossRefGoogle Scholar
  48. 48.
    Choi GS, Choi GH (1997) Process analysis and monitoring in abrasive water jet machining of alumina ceramics. Int J Mach Tools Manuf 37:295–307CrossRefGoogle Scholar
  49. 49.
    Choobineh F, Jain VK (1993) A fuzzy sets approach for selecting optimum parameters of an ECM process. Process Adv Mater 3:225–232Google Scholar
  50. 50.
    Ciurana J, Arias G, Ozel T (2009) Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater Manuf Process 24(3):358–368CrossRefGoogle Scholar
  51. 51.
    Clifton D, Mount AR, Alder GM, Jardine D (2002) Ultrasonic measurement of the inter-electrode gap in electro chemical machining. Int J Mach Tools Manuf 42:1259–1267CrossRefGoogle Scholar
  52. 52.
    Clodeinir RP, Guerra REH, Haber RH, Alique A, Ros S (1999) Fuzzy model and hierarchical fuzzy control integration: an approach for milling process optimization. Comp Ind 39:199CrossRefGoogle Scholar
  53. 53.
    Cook NH (1966) Manufacturing analysis. Addison-Wesley, LondonGoogle Scholar
  54. 54.
    Deam RT, Lemma E, Ahmed DH (2004) Modeling of the abrasive water jet cutting process. Wear 257(9–10):877–891CrossRefGoogle Scholar
  55. 55.
    Demir E (2008) Taylor-based model for micro-machining of single crystal fcc materials including frictional effects-application to micro-milling process. Int J Mach Tools Manuf 48(1):1592–1598CrossRefGoogle Scholar
  56. 56.
    Dereli T, Filiz IH, Baykasoglu A (2001) Optimizing cutting parameters in process planning of prismatic parts using genetic algorithms. Int J Prod Res 39:3303CrossRefGoogle Scholar
  57. 57.
    Dhara SK, Kuar AS, Mitra S (2008) An artificial neural network approach on parametric optimization of laser micro-machining of die-steel. Int J Adv Manuf Technol 39(1–2):39–46CrossRefGoogle Scholar
  58. 58.
    Dhupal D, Doloi B, Bhattacharyya B (2008) Parametric analysis and optimization of Nd:YAG laser micro-grooving of aluminum titanate (Al2TiO5) ceramics. Int J Adv Manuf Technol 36(9–10):883–893CrossRefGoogle Scholar
  59. 59.
    Dhupal D, Doloi B, Bhattacharyya B (2009) Modeling and optimization on Nd:YAG laser turned micro-grooving of cylindrical ceramic material. Opt Lasers Eng 47(9):917–925CrossRefGoogle Scholar
  60. 60.
    Dow TA, Miller EL, Garrard K (2004) Tool force and deflection compensation for small milling tools. Precis Eng 28:31–45CrossRefGoogle Scholar
  61. 61.
    Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34(1–2):131–140CrossRefGoogle Scholar
  62. 62.
    Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628Google Scholar
  63. 63.
    Dubey AK, Yadava V (2008) Multi-objective optimization of laser beam cutting process. Opt Laser Technol 40(3):562–570CrossRefGoogle Scholar
  64. 64.
    Dubey AK, Yadava V (2008) Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Opt Lasers Eng 46(2):124–132CrossRefGoogle Scholar
  65. 65.
    Dubey AK, Yadava V (2008) Optimization of kerf quality during pulsed laser cutting of aluminum alloy sheet. J Mater Process Technol 204(1–3):412–418CrossRefGoogle Scholar
  66. 66.
    Dubey AK, Yadava V (2008) Experimental study of Nd:YAG laser beam machining—an overview. J Mater Process Technol 195(1–3):15–26CrossRefGoogle Scholar
  67. 67.
    El-Dardy MA (1982) Economic study of electro chemical machining. Int J Mach Tools Manuf 22:147–158Google Scholar
  68. 68.
    Eltobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J Mach Tool Manuf 45:1337–1346CrossRefGoogle Scholar
  69. 69.
    Fang N (2003) Slip-line modeling of machining with a rounded-edge tool—part I: new model and theory. J Mech Phys Solids 51:715–742CrossRefMATHGoogle Scholar
  70. 70.
    Finnie I (1960) Erosion of surfaces by solid particles. Wear 3:87–103CrossRefGoogle Scholar
  71. 71.
    Gadalla AM, Bozkurt B, Faulk NM (1991) Modeling of thermal spalling during electrical discharge mechanism of TiB2. J Am Ceram Soc 74:801–806CrossRefGoogle Scholar
  72. 72.
    Ghoreishi M, Low DKY, Li L (2002) Comparative statistical analysis of hole taper and circularity in laser percussion drilling. Int J Mach Tools Manuf 42:985–995CrossRefGoogle Scholar
  73. 73.
    Ghoreishi M, Nakhjavani OB (2008) Optimization of effective factors in geometrical specifications of laser percussion drilled holes. J Mater Process Technol 196(1–3):303–310CrossRefGoogle Scholar
  74. 74.
    Ghosh A, Mallik AK (1985) Manufacturing science. Affiliated East-West Press, New DelhiGoogle Scholar
  75. 75.
    Gokler MI, Ozanozgu AM (2000) Experimental investigation of effects of cutting parameters on surface roughness in the WEDM process. Int J Mach Tools Manuf 40(13):1831–1848CrossRefGoogle Scholar
  76. 76.
    Han F, Jiang J, Yu D (2007) Finish cut of wire electrical discharge machining (WEDM). Int J Adv Manuf Technol 34(5–6)Google Scholar
  77. 77.
    Han F, Kunieda MT, Sendai T, Imai Y (2002) High precision simulation of WEDM using parametric programming. CIRP Ann Manuf Technol 51(1):165–168CrossRefGoogle Scholar
  78. 78.
    Han MP, Min BK, Lee SJ (2008) Modeling gas film formation in electrochemical discharge machining process using a side-insulated electrode. J Micromech Microeng 18:50–58Google Scholar
  79. 79.
    Hargrove SK, Ding D (2007) Determining cutting parameters in wire EDM based on workpiece surface temperature distribution. Int J Adv Manuf Technol 34(3–4)Google Scholar
  80. 80.
    Hascalyk A, Caydas U (2004) Experimental study of wire electrical discharge machining of AISI D5 tool steel. J Mater Process Technol 148:362–367CrossRefGoogle Scholar
  81. 81.
    Hashish M (1989) A model for abrasive water jet (AWJ) machining. J Eng Mater Technol 111:154–162CrossRefGoogle Scholar
  82. 82.
    Hashish M (1984) A modeling study of metal cutting with abrasive water jets. J Eng Mater Technol 106:88–100CrossRefGoogle Scholar
  83. 83.
    Hassan AI, Kosmol J (2001) Dynamic elastic–plastic analysis of 3D deformation in abrasive waterjet machining. J Mater Process Technol 113(1–3):337–341CrossRefGoogle Scholar
  84. 84.
    Hewidy MS, El-Taweel TA, El-Safty MF (2005) Modeling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J Mater Process Technol 169:328–336CrossRefGoogle Scholar
  85. 85.
    Hewidy MS, Ebeid SJ, El-Taweel TA, Youssef AH (2007) Modeling the performance of ECM assisted by low frequency vibrations. J Mater Process Technol 189(1–3):466–472CrossRefGoogle Scholar
  86. 86.
    Hewidy MS, Fattouh M, Elkhabeery M (1984) Some economical aspects of ECM processes. In: Proceedings of first AME conference, TT8. Military Technical College, Cairo, pp 87–94Google Scholar
  87. 87.
    Hlaváč LM (2009) Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Process Technol 209(8):4154–4161CrossRefGoogle Scholar
  88. 88.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44:1247–1259CrossRefGoogle Scholar
  89. 89.
    Hocheng H, Chang KR (1994) Material removal analysis in abrasive waterjet cutting of ceramic plates. J Mater Process Technol 40(3–4):287–304CrossRefGoogle Scholar
  90. 90.
    Hoogstrate AM, Karpuschewski B, Luttervelt CAV, Kals HJJ (2002) Modeling of high velocity, loose abrasive machining processes. CIRP Ann Manuf Technol 51(1):263–266CrossRefGoogle Scholar
  91. 91.
    Hoogstrate AM, Luttervelt CAV, Gosger P, Momber AW, Tönshoff HK, Louis H, Klocke F, Riviere D, Magnusson AC, Gardner J, Rajurkar KP, Kim TJ, Konacevic R, Ryd J, Henning A, Ojmertz C, Kruth JP, Meijer J, Leu MC (1997) Opportunities in abrasive water jet machining. CIRP Ann Manuf Technol 46(2):697–714CrossRefGoogle Scholar
  92. 92.
    Hopenfeld J, Cole RR (1969) Prediction of the one dimensional equilibrium cutting gap in electro-chemical machining. ASME J Eng Indust 8:755–760Google Scholar
  93. 93.
    Hough CL, Goforth RE (1981) Optimization of the second order logarithmic machining economics problem by extended geometric programming—part II posynomial constraints. Am Inst Ind Eng Trans 13:234–238MathSciNetGoogle Scholar
  94. 94.
    Hsu CY, Lin YY, Lee WS, Lo SP (2008) Machining characteristics of Inconel 718 using ultrasonic and high temperature-aided cutting. J Mater Process Technol 198(1–3):359–365CrossRefGoogle Scholar
  95. 95.
    Hsue WJ, Liao YS, Lu SS (1999) Fundamental geometry analysis of wire electrical discharge machining in corner cutting. Int J Mach Tools Manuf 39(4):651–667CrossRefGoogle Scholar
  96. 96.
    Hu P, Zhang JM, Pei ZJ (2002) Clyde Treadwell Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J Mater Process Technol 129(1–3):339–344CrossRefGoogle Scholar
  97. 97.
    Huang JT, Liao YS (2003) Optimization of machining parameters of wire-EDM based on grey relational and statistical analyses. Int J Prod Res 41(8):1707–1720CrossRefMATHGoogle Scholar
  98. 98.
    Jackson MJ, O’Neill W (2003) Laser micro-drilling of tool steel using Nd:YAG lasers. J Mater Process Technol 142:517–525CrossRefGoogle Scholar
  99. 99.
    Jadoun RS, Kumar P, Mishra BK (2009) Taguchi’s optimization of process parameters for production accuracy in ultrasonic drilling of engineering ceramics. Prod Eng 3(3):243–253CrossRefGoogle Scholar
  100. 100.
    Jain NK, Jain VK (2001) Modeling of material removal in mechanical type advanced machining processes: state of the art review. Int J Mach Tools Manuf 41:1573–1635CrossRefGoogle Scholar
  101. 101.
    Jain NK, Jain VK (2007) Optimization of electro chemical machining process parameters using genetic algorithm. Mach Sci Technol 11:235–258CrossRefGoogle Scholar
  102. 102.
    Jain NK, Jain VK, Deb K (2007) Optimization of process parameters of mechanical type advanced machining processes using genetic algorithm. Int J Mach Tools Manuf 47:900–919CrossRefGoogle Scholar
  103. 103.
    Jain VK (2002) Advanced machining processes. Allied Publishers, New DelhiGoogle Scholar
  104. 104.
    Jain VK, Dixit PM, Pandey PM (1999) On the analysis of electrochemical spark machining process. Int J Mach Tools Manuf 39:165–186CrossRefGoogle Scholar
  105. 105.
    Jain VK, Srinivas P, Narayansamy K (1991) Experimental investigation into travelling wire electrochemical spark machining (TW-ECSM) of composites. J Eng Ind 27(1–2):75–84Google Scholar
  106. 106.
    Jegaraj JJR, Babu NR (2007) A soft computing approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear. J Mater Process Technol 185(1–3):217–227Google Scholar
  107. 107.
    Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32(7):1095–1112CrossRefGoogle Scholar
  108. 108.
    Kaebernick H, Bicleanu D, Brandt M (1999) Theoretical and experimental investigation of pulsed laser cutting. CIRP Ann Manuf Technol 48(1):163–166CrossRefGoogle Scholar
  109. 109.
    Kainth GS, Nandy A, Singh K (1979) On the mechanics of material removal in ultrasonic machining. Int J Mach Tool Des Res 19:33–41CrossRefGoogle Scholar
  110. 110.
    Kanlayasiri K, Boonmung S (2007) Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. J Mater Process Technol 192–193:459–464CrossRefGoogle Scholar
  111. 111.
    Kao CC, Shih AJ (2008) Design and tuning of a fuzzy logic controller for micro-hole electrical discharge machining. J Manuf Process 10(2):61–73MathSciNetCrossRefGoogle Scholar
  112. 112.
    Karazi SM, Issa A, Brabazon D (2009) Comparison of ANN and DoE for the prediction of laser-machined micro-channel dimensions. Opt Laser Eng 47(9):956–964CrossRefGoogle Scholar
  113. 113.
    Kaczmarek I (1976) Impact grinding (ultrasonic machining). In: Principles of machining by cutting abrasion and erosion, Peter Peregrinus Ltd, StevenageGoogle Scholar
  114. 114.
    Kalpakjian S, Schmid S (2005) Manufacturing engineering and technology. Prentice Hall, New JerseyGoogle Scholar
  115. 115.
    Kang IS, Kim JS, Kim JH, Kang MC, Seo YW (2007) A mechanistic model of cutting force in the micro-end milling process. J Mater Process Technol 187–188:250–255CrossRefGoogle Scholar
  116. 116.
    Khan AA, Haque MM (2007) Performance of different abrasive materials during abrasive water jet machining of glass. J Mater Process Technol 191:404–407CrossRefGoogle Scholar
  117. 117.
    Kim CJ, Mayor JR, Ni J (2004) A static model of chip formation in micro-scale milling. J Manuf Sci Eng 126:710–718CrossRefGoogle Scholar
  118. 118.
    Kim DJ, Ahn Y, Lee SH, Kim YK (2006) Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass. Int J Mach Tools Manuf 46(10):1064–1067CrossRefGoogle Scholar
  119. 119.
    Klocke F, Gerschwiler K, Abouridouane M (2009) Size effects of micro-drilling in steel. Prod Eng 3(1):69–72CrossRefGoogle Scholar
  120. 120.
    Komaraiah M, Manan MA, Reddy PN, Victor S (1988) Investigation of surface roughness and accuracy in ultrasonic machining. Precis Eng 10(2):59–65CrossRefGoogle Scholar
  121. 121.
    Konda R, Rajurkar KP, Bishu RR, Guha A, Parson M (1999) Design of experiments to study and optimize process performance. Int J Qual Reliab Manag 16(1):56–71CrossRefGoogle Scholar
  122. 122.
    Kopalinsky EM, Oxley PLB (1984) Size effects in metal removal processes. Inst Phys Conf Ser 70:389–396Google Scholar
  123. 123.
    Kovacevic R, Fang M (1994) Modeling the influence of the abrasive waterjet cutting parameters on the depth of cut based on fuzzy rules. Int J Mach Tools Manuf 34(1):55–72CrossRefGoogle Scholar
  124. 124.
    Kovacevic R, Hashish M, Mohan R, Ramulu M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive waterjet machining. J Manuf Sci Eng 119(4):776–785CrossRefGoogle Scholar
  125. 125.
    Kozak J (1975) Optimization of electro chemical machining (ECM) process from the point of view of geometrical accuracy. Archiwum Budowy Maszyn 22:387–398Google Scholar
  126. 126.
    Kozak J (2001) Computer simulation system for electrochemical shaping. J Mater Process Technol 109:354–359CrossRefGoogle Scholar
  127. 127.
    Kozak J, Luczan D, Konrad L, Marek R, Robert S (2001) CAE-ECM system for electrochemical technology of parts and tools. J Mater Process Technol 107:293–299CrossRefGoogle Scholar
  128. 128.
    Kuar AS, Doloi B, Bhattacharyya B (2006) Modeling and analysis of pulsed Nd:YAG laser machining characteristics during micro-drilling of zirconia(ZrO2). Int J Mach Tools Manuf 46:1301–1310CrossRefGoogle Scholar
  129. 129.
    Kuar AS, Paul G, Mitra S (2006) Nd:YAG laser micromachining of alumina–aluminum interpenetrating phase composite using response surface methodology. Int J Mach Mach Mater 1(4):423–444Google Scholar
  130. 130.
    Kulkarni A, Sharan R, Lal GK (2002) An experimental study of discharge mechanism in electrochemical discharge machining. Int J Mach Tools Manuf 42:1121–1127CrossRefGoogle Scholar
  131. 131.
    Kulkarni AV (2009) Systematic experimental analysis of electrochemical discharge machining process. Int J Mach Machinability Mater 6(3–4):194–212CrossRefGoogle Scholar
  132. 132.
    Kumar V, Khamba JS (2009) Parametric optimization of ultrasonic machining of co-based super alloy using the Taguchi multi-objective approach. Prod Eng Res Dev 3:417–425CrossRefGoogle Scholar
  133. 133.
    Kumar V, Khamba JS (2009) Statistical analysis of experimental parameters in ultrasonic machining of tungsten carbide using the Taguchi approach. J Am Ceram Soc 91:92–96CrossRefGoogle Scholar
  134. 134.
    Kumar V, Khamba JS (2010) Modeling the material removal rate in ultrasonic machining using dimensional analysis. Int J Adv Manuf Technol 48(1–4):103–119CrossRefGoogle Scholar
  135. 135.
    Kuriakose S, Shunmugam MS (2005) Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. J Mater Process Technol 170:133–141CrossRefGoogle Scholar
  136. 136.
    Lai X, Li H, Li C, Lin Z, Ni J (2008) Modeling and analysis of micro-scale milling considering size effect, micro-cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14CrossRefGoogle Scholar
  137. 137.
    Lee TC, Chan CW (1997) Mechanism of ultrasonic machining of ceramic composites. J Mater Process Technol 71:195–201CrossRefGoogle Scholar
  138. 138.
    Lee WM, Liao YS (2007) Adaptive control of the WEDM process using a self-tuning fuzzy logic algorithm with grey prediction. Int J Adv Manuf Technol 34(5–6)Google Scholar
  139. 139.
    Li L, Diver C, Atkinson J, Giedl-Wagner R, Helml HJ (2006) Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture. CIRP Ann Manuf Technol 55(1):179–182CrossRefGoogle Scholar
  140. 140.
    Li CH, Tsai MJ (2009) Multi-objective optimization of laser cutting for flash memory modules with special shapes using grey relational analysis. Opt Laser Technol 41(5):634–642MathSciNetCrossRefGoogle Scholar
  141. 141.
    Li CH, Tsai MJ, Yang CD (2007) Study of optimal laser parameters for cutting QFN packages by Taguchi’s matrix method. Opt Laser Technol 39:786–795CrossRefGoogle Scholar
  142. 142.
    Li ZC, Cai LW, Pei ZJ, Treadwell C (2006) Edge-chipping reduction in rotary ultrasonic machining of ceramics: finite element analysis and experimental verification. Int J Mach Tools Manuf 46(12–13):1469–1477CrossRefGoogle Scholar
  143. 143.
    Li ZC, Jiao Y, Deines TW, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tools Manuf 45(12–13):1402–1411CrossRefGoogle Scholar
  144. 144.
    Liao YS, Huang JT, Su HC (1997) A study on the machining parameters optimization of wire electrical discharge machining. J Mater Process Technol 71(3):487–493CrossRefGoogle Scholar
  145. 145.
    Liao YS, Yan MT, Chang CC (2002) A neural network approaches for the on-line estimation of work piece height in WEDM. J Mater Process Technol 121(2–3):252–258CrossRefGoogle Scholar
  146. 146.
    Lim SH, Lee CM, Chung WJ (2006) A study on optimal cutting condition of a high speed feeding type laser cutting machine by using Taguchi method. Int J Precis Eng Manuf 7(1):18–23Google Scholar
  147. 147.
    Liu CL, Esterling D (1997) Solid modeling of 4-axis wire EDM cut geometry. Comp Aided Des 29(12):803–810CrossRefGoogle Scholar
  148. 148.
    Liu H, Wang J, Kelson N, Brown RJ (2004) A study of abrasive waterjet characteristics by CFD simulation. J Mater Process Technol 153–154:488–493CrossRefGoogle Scholar
  149. 149.
    Liu JW, Yue TM, Guo ZN (2010) An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Mach Tools Manuf 50(1):86–96CrossRefGoogle Scholar
  150. 150.
    Liu X, Vogler MP, Kapoor SG, DeVor RE, Ehmann KF, Mayor R, Kim CJ, Ni J (2004) Micro-end milling with meso-machine-tool system. In: Proceedings of NSF Design, Service and Manufacturing Grantees and Research Conference, DallasGoogle Scholar
  151. 151.
    Lucca DA, Rhorer RL, Komanduri R (1991) Energy dissipation in the ultra precision machining of copper. CIRP Ann Manuf Technol 40:69–72CrossRefGoogle Scholar
  152. 152.
    Ma C, Deam RT (2006) A correlation for predicting the kerf profile from abrasive water jet cutting. Exp Therm Fluid Sci 30(4):337–343CrossRefGoogle Scholar
  153. 153.
    Ma C, Shamoto E, Moriwaki T, Wang L (2004) Study of machining accuracy in ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 44(12–13):1305–1310CrossRefGoogle Scholar
  154. 154.
    Machinability Data Center (1980) Machining data handbook. Metcut Research Associates, OhioGoogle Scholar
  155. 155.
    Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9–10)Google Scholar
  156. 156.
    Manna A, Bhattacharyya B (2006) Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC. Int J Adv Manuf Technol 28(1–2)Google Scholar
  157. 157.
    Malekian M, Park SS, Jun MBG (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tools Manuf 49(7–8):586–598CrossRefGoogle Scholar
  158. 158.
    Malekian M, Park SS, Jun MBG (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209(10):4903–4914CrossRefGoogle Scholar
  159. 159.
    Manu R, Babu NR (2009) An erosion-based model for abrasive waterjet turning of ductile materials. Wear 266(11–12):1091–1097CrossRefGoogle Scholar
  160. 160.
    Masmiati N, Philip PK (2007) Investigations on laser percussion drilling of some thermoplastic polymers. J Mater Process Technol 185:198–203CrossRefGoogle Scholar
  161. 161.
    Mathew J, Goswami GL, Ramakrishnan N, Naik NK (1999) Parametric studies on pulsed Nd:YAG laser cutting of carbon fibre reinforced plastic composites. J Mater Process Technol 89–90:198–203CrossRefGoogle Scholar
  162. 162.
    McGeough JA (1988) Advanced methods of machining. Chapman and Hall, New YorkGoogle Scholar
  163. 163.
    Mediliyegedara TKKR, De Silva AKM, Harrison DK, McGeough JA (2005) New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process. J Mater Process Technol 167(2–3):338–343Google Scholar
  164. 164.
    Mediliyegedara TKKR, De Silva AKM, Harrison DK, McGeough JA, Hepburn D (2006) Designing steps and simulation results of a pulse classification system for the electro chemical discharge machining (ECDM) process-an artificial neural network approach. In: Advances in soft computing, applied soft computing technologies: the challenge of complexity. Springer, HiedelbergGoogle Scholar
  165. 165.
    Miller GE (1957) Special theory of ultrasonic machining. J App Phys 28:149–156CrossRefGoogle Scholar
  166. 166.
    Min S, Dornfeld D, Inasaki I, Ohmori H, Lee D, Deichmueller M, Yasuda T, Niwa K (2006) Variation in machinability of single crystal materials in micromachining. CIRP Ann Manuf Technol 55(1):105–110CrossRefGoogle Scholar
  167. 167.
    Mishra PK (1997) Nonconventional machining. Narosa Publishing House, New DelhiGoogle Scholar
  168. 168.
    Mitrofanov AV, Babitsky VI, Silberschmidt VV (2004) Finite element analysis of ultrasonically assisted turning of Inconel 718. J Mater Process Technol 153–154:233–239CrossRefGoogle Scholar
  169. 169.
    Montgomery DC (1997) Design and analysis of experiments. Wiley, New YorkMATHGoogle Scholar
  170. 170.
    Mostofa MG, Kil KY, Hwan AJ (2010) Computational fluid analysis of abrasive waterjet cutting head. J Mech Sci Technol 24:249–252CrossRefGoogle Scholar
  171. 171.
    Nair EV, Ghosh A (1985) A fundamental approach to the study of the mechanics of ultrasonic machining. Int J Prod Res 23:731–753CrossRefGoogle Scholar
  172. 172.
    Nakayama K, Tamura K (1968) Size effect in metal-cutting force. J Eng Ind 90:119Google Scholar
  173. 173.
    Nath C, Rahman M (2008) Effect of machining parameters in ultrasonic vibration cutting. Int J Mach Tools Manuf 48(9):965–974CrossRefGoogle Scholar
  174. 174.
    Newby G, Venkatachalam S, Liang SY (2007) Empirical analysis of cutting force constants in micro-end-milling operations. J Mater Process Technol 192–193(1):41–47CrossRefGoogle Scholar
  175. 175.
    Orbanic H, Junkar M (2008) Analysis of striation formation mechanism in abrasive water jet cutting. Wear 265(5–6):821–830CrossRefGoogle Scholar
  176. 176.
    Pajak PT, De Silva AKM, McGeough JA, Harrison DK (2004) Modeling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM). J Mater Process Technol 149(1–3):512–518CrossRefGoogle Scholar
  177. 177.
    Pan LK, Wang CC, Hsiao YC, Ho KC (2005) Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis. Opt Laser Technol 37(1):33–42Google Scholar
  178. 178.
    Park SS, Malekian M (2009) Mechanistic modeling and accurate measurement of micro-end milling forces. CIRP Ann Manuf Technol 58(1):49–52CrossRefGoogle Scholar
  179. 179.
    Park SS, Rahnama R (2010) Robust chatter stability in micro-milling operations. CIRP Ann Manuf Technol 59(1):391–394CrossRefGoogle Scholar
  180. 180.
    Paul S, Hoogstrate AM, Luttervelt VCA, Kals HJJ (1998) Analytical and experimental modeling of abrasive water jet cutting of ductile materials. J Mater Process Technol 73:189–199CrossRefGoogle Scholar
  181. 181.
    Pei ZJ, Ferreira PM (1998) Modeling of ductile mode material removal in rotary ultrasonic machining. Int J Mach Tools Manuf 38:1399–1418CrossRefGoogle Scholar
  182. 182.
    Pei ZJ, Prabhakar D, Ferreira PM, Haselkorn M (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J Eng Ind 117:142–151CrossRefGoogle Scholar
  183. 183.
    Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization. Comput Struct 85:1579–1588CrossRefGoogle Scholar
  184. 184.
    Pham DT, Dimov SS, Bigot S, Ivanov A, Popov K (2004) Micro-EDM—recent developments and research issues. J Mater Process Technol 149(1–3):50–57CrossRefGoogle Scholar
  185. 185.
    Plaza S, Ortega N, Sanchez JA, Pombo I, Mendikute A (2009) Application of the wire electrical discharge machining (WEDM) process. Int J Adv Manuf Technol 44(5–6)Google Scholar
  186. 186.
    Prabhakar D, Pei ZJ, Ferreira PM, Haselkorn M (1993) A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics. Trans NAMRI/SME XXI:167–172Google Scholar
  187. 187.
    Pradhan BB, Masanta M, Sarkar BR, Bhattacharyya B (2009) Investigation of electro-discharge micro-machining of titanium super alloy. Int J Adv Manuf Technol 41(11–12):1094–1106CrossRefGoogle Scholar
  188. 188.
    Purcar M, Bortels L, Bossche BVD, Deconinck J (2004) 3D electrochemical machining computer simulations. J Mater Process Technol 149(1–3):472–478CrossRefGoogle Scholar
  189. 189.
    Pujana J, Rivero A, Celaya A, de Lacalle LNL (2009) Analysis of ultrasonic-assisted drilling of Ti6Al4 V. Int J Mach Tools Manuf 49(6):500–508CrossRefGoogle Scholar
  190. 190.
    Puri AB, Bhattacharyya B (2003) An analysis and optimization of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int J Mach Tools Manuf 43(2):151–159CrossRefGoogle Scholar
  191. 191.
    Raghuram V, Pramila T, Srinivasa YG, Narayanasamy K (1995) Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon. J Mater Process Technol 52(2–4):301–318CrossRefGoogle Scholar
  192. 192.
    Rajurkar KP, Zhu D, McGeough JA, Kozak J, De Silva A (1999) New developments in electro chemical machining. CIRP Ann Manuf Technol 48:567–579CrossRefGoogle Scholar
  193. 193.
    Ramakrishnan R, Karunamoorthy L (2008) Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process. J Mater Process Technol 7(1–3):343–349CrossRefGoogle Scholar
  194. 194.
    Rao KM, Rangajanardhaa G, Hanumantha RD, Sreenivasa RM (2009) Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J Mater Process Technol 3:1512–1520Google Scholar
  195. 195.
    Rao R, Yadava V (2009) Multi-objective optimization of Nd:YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Opt Laser Technol 41(8):922–930CrossRefGoogle Scholar
  196. 196.
    Rao RV (2007) Decision making in the manufacturing environment using graph theory and fuzzy multiple attribute decision making methods. Springer, LondonGoogle Scholar
  197. 197.
    Rao RV, Pawar PJ (2009) Modeling and optimization of process parameters of wire electrical discharge machining. Proc Inst Mech Eng Part B J Eng Manuf 223(11):1431–1440CrossRefGoogle Scholar
  198. 198.
    Rao RV, Pawar PJ, Davim JP (2010) Parameter optimization of ultrasonic machining process using non-traditional optimization algorithms. Mater Manuf Process (in press)Google Scholar
  199. 199.
    Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl Soft Comput 10:445–456CrossRefGoogle Scholar
  200. 200.
    Rao RV, Pawar PJ, Shankar R (2008) Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Proc Inst Mech Eng Part B J Eng Manuf 222(8):949–958CrossRefGoogle Scholar
  201. 201.
    Rosenberg LD, Kazantsev VF, Makarov LO, Yakhimovich DF (1964) Ultrasonic cutting. Consultant Bureau, New YorkGoogle Scholar
  202. 202.
    Saha P, Singha A, Pal SK, Saha P (2008) Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite. Int J Adv Manuf Technol 39(1–2)Google Scholar
  203. 203.
    Saha S, Pachon M, Ghoshal A, Schulz MJ (2004) Finite element modeling and optimization to prevent wire breakage in electro-discharge machining. Mech Res Commun 31(4):451–463CrossRefGoogle Scholar
  204. 204.
    Samant AN, Dahotre NB (2008) Computational predictions in single-dimensional laser machining of alumina. Int J Mach Tools Manuf 48(12–13):1345–1353CrossRefGoogle Scholar
  205. 205.
    Samant AN, Paital SR, Dahotre NB (2008) Process optimization in laser surface structuring of alumina. J Mater Process Technol 203(1–3):498–504CrossRefGoogle Scholar
  206. 206.
    Sanchez JA, Lacalle LNL, Lamikiz A (2004) A computer-aided system for the optimization of the accuracy of the wire electro-discharge machining process. Int J Comp Integr Manuf 17(5):413–420CrossRefGoogle Scholar
  207. 207.
    Sarkar BR, Doloi B, Bhattacharyya B (2006) Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int J Adv Manuf Technol 28(9–10)Google Scholar
  208. 208.
    Sarkar BR, Doloi B, Bhattacharyya B (2008) Experimental investigation into electrochemical discharge microdrilling on advanced ceramics. Int J Manuf Technol Manag 13(204):214–225Google Scholar
  209. 209.
    Sarkar BR, Doloi B, Bhattacharyya B (2009) Investigation into the influences of the power circuit on the micro-electrochemical discharge machining process. Proc Inst Mech Eng Part B J Eng Manuf 223(2):133–144CrossRefGoogle Scholar
  210. 210.
    Sarkar S, Mitra S, Bhattacharyya B (2005) Parametric analysis and optimization of wire electrical discharge machining of γ-titanium aluminide alloy. J Mater Process Technol 159:286–294CrossRefGoogle Scholar
  211. 211.
    Schöpf M, Beltrami I, Boccadoro M, Kramer D, Schumacher B (2001) ECDM a new method for trueing and dressing of metal bonded diamond grinding tools. CIRP Ann Manuf Technol 50(1):125–128CrossRefGoogle Scholar
  212. 212.
    Scott D, Boyina S, Rajurkar KP (1991) Analysis and optimization of parameter combination in wire electrical discharge machining. Int J Prod Res 29(11):2189–2207CrossRefMATHGoogle Scholar
  213. 213.
    Sen M, Shan HS (2005) A review of electrochemical macro- to micro-hole drilling processes. Int J Mach Tools Manuf 45(2):137–152CrossRefGoogle Scholar
  214. 214.
    Sen M, Shan HS (2005) Analysis of hole quality characteristics in the electro jet drilling process. Int J Mach Tools Manuf 45(15):1706–1716CrossRefGoogle Scholar
  215. 215.
    Senthilkumar C, Ganesan G, Karthikeyan R (2009) Study of electrochemical machining characteristics of Al/SiCp composites. Int J Adv Manuf Technol 43(3–4)Google Scholar
  216. 216.
    Shanmugam DK, Masood SH (2009) An investigation on kerf characteristics in abrasive waterjet cutting of layered composites. J Mater Process Technol 209(8):3887–3893CrossRefGoogle Scholar
  217. 217.
    Shaw MC (1995) Precision finishing. CIRP Ann Manuf Technol 44(1):343–348CrossRefGoogle Scholar
  218. 218.
    Shaw MC (1956) Ultrasonic grinding. Microtechnic 10:257–265Google Scholar
  219. 219.
    Singh J, Gill SS (2009) Fuzzy modeling and simulation of ultrasonic drilling of porcelain ceramic with hollow stainless steel tools. Mater Manuf Process 24:468–475CrossRefGoogle Scholar
  220. 220.
    Singh R, Khamba JS (2009) Mathematical modeling of surface roughness in ultrasonic machining of titanium using Buckingham-Π approach: a review. Int J Abras Technol 2:3–24CrossRefGoogle Scholar
  221. 221.
    Singh R, Khamba JS (2009) Mathematical modeling of tool wear rate in ultrasonic machining of titanium. Int J Adv Manuf Technol 43(5–6):573–580CrossRefGoogle Scholar
  222. 222.
    Singh R, Khamba JS (2007) Macromodel for ultrasonic machining of titanium and its alloys: designed experiments. Proc Inst Mech Eng Part B J Eng Manuf 221:221–229CrossRefGoogle Scholar
  223. 223.
    Singh R, Khamba JS (2007) Taguchi technique for modeling material removal rate in ultrasonic machining of titanium. Mater Sci Eng A 460–461:365–369Google Scholar
  224. 224.
    Singh R, Khamba JS (2006) Ultrasonic machining of titanium and its alloys: a review. J Mater Process Technol 173(2):125–135CrossRefGoogle Scholar
  225. 225.
    Sonmez AI, Baykasoglu A, Dereli T, Filiz IH (1999) Dynamic optimization of multi-pass milling operations via geometric programming. Int J Mach Tools Manuf 39(2):297CrossRefGoogle Scholar
  226. 226.
    Spedding TA, Wang ZQ (1997) Parametric optimization and surface characterization of wire electrical discharge machining process. Precis Eng 20(1):5–15CrossRefGoogle Scholar
  227. 227.
    Spur G, Schönbeck J (1993) Anode erosion in wire-EDM-a theoretical model. CIRP Ann Manuf Technol 42(1):253–256CrossRefGoogle Scholar
  228. 228.
    Sreeram S, Kumar AS, Rahman M, Zaman MT (2006) Optimization of cutting parameters in micro-end milling operations under dry cutting conditions using genetic algorithms. Int J Adv Manuf Technol 30:1030–1039Google Scholar
  229. 229.
    Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int J Mach Tools Manuf 49(14):1077–1088CrossRefGoogle Scholar
  230. 230.
    Srinivasu DS, Babu NR (2008) A neuro-genetic approach for selection of process parameters in abrasive waterjet cutting considering variation in diameter of focusing nozzle. Appl Soft Comput 8(1):809–819CrossRefGoogle Scholar
  231. 231.
    Tam SC, Lim LEN, Quek KY (1992) Application of Taguchi method in the optimization of the laser-cutting process. J Mater Process Technol 29:63–74CrossRefGoogle Scholar
  232. 232.
    Tam SC, Yeo CY, Jana S, Lau WS, Lim EN, Yang LJ (1993) Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method. J Mater Process Technol 37:741–757CrossRefGoogle Scholar
  233. 233.
    Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tools Manuf 35(12):1693–1701CrossRefGoogle Scholar
  234. 234.
    Tolouei-Rad M, Bidhendi IM (1996) On the optimization of machining parameters for milling operations. Int J Mach Tools Manuf 37:1–16CrossRefGoogle Scholar
  235. 235.
    Tosun N, Cogun C, Inan A (2003) The effect of cutting parameters on work piece surface roughness in wire EDM. Mach Sci Technol 7(2):209–219CrossRefGoogle Scholar
  236. 236.
    Tosun N, Cogun C, Tosun GA (2004) Study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. J Mater Process Technol 152:316–322CrossRefGoogle Scholar
  237. 237.
    Trueman CS, Huddleston J (2000) Material removal by spalling during EDM of ceramics. J Eu Ceram Soc 20:1629–1635CrossRefGoogle Scholar
  238. 238.
    Tsai MJ, Li CH, Chen CC (2008) Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm. J Mater Process Technol 208(1–3):270–283CrossRefGoogle Scholar
  239. 239.
    Uhlmann E, Schauer K (2005) Dynamic load and strain analysis for the optimization of micro-end mills. CIRP Ann Manuf Technol 54(1):75–78CrossRefGoogle Scholar
  240. 240.
    Vikram G, Babu NR (2002) Modeling and analysis of abrasive water jet cut surface topography. Int J Mach Tools Manuf 42(12):1345–1354CrossRefGoogle Scholar
  241. 241.
    Vogler MP, Devor RE, Kapoor SG (2004) Microstructure-level force prediction model for micro-milling of multi- phase materials. J Manuf Sci Eng 125:202–209CrossRefGoogle Scholar
  242. 242.
    Wang J (2007) Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. Int J Mech Sci 49(3):306–316CrossRefGoogle Scholar
  243. 243.
    Wang J, Guo DM (2002) A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites. J Mater Process Technol 121(2–3):390–394CrossRefGoogle Scholar
  244. 244.
    Wang ZY, Rajurkar KP (1996) Dynamic analysis of the ultrasonic machining process. J Manuf Sci Eng 118:376–381CrossRefGoogle Scholar
  245. 245.
    Wang R, Wang M (2010) A two-fluid model of abrasive waterjet. J Mater Process Technol 210(1):190–196CrossRefGoogle Scholar
  246. 246.
    Wang WM, Rajurkar KP (1992) Modeling and adaptive control of EDM systems. J Manuf Sys 11(5):334–335CrossRefGoogle Scholar
  247. 247.
    Wiercigroch M, Neilson RD, Player MA (1999) Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Phys Lett A 259(2):91–96CrossRefGoogle Scholar
  248. 248.
    Wissmiller DL, Pfefferkorn FE (2009) Micro-end mill tool temperature measurement and prediction. J Manuf Process 11(1):45–53CrossRefGoogle Scholar
  249. 249.
    Wüthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon—an overview. Int J Mach Tools Manuf 45(9):1095–1108CrossRefGoogle Scholar
  250. 250.
    Ya G, Qin HW, Yang SC, Xu YW (2002) Analysis of the rotary ultrasonic machining mechanism. J Mater Process Technol 129(1–3):182–185CrossRefGoogle Scholar
  251. 251.
    Yellowley I, Gunn EA (1989) The optimal subdivision of cut in multi-pass machining operations. Int J Prod Res 27:1573CrossRefGoogle Scholar
  252. 252.
    Yeo CY, Tam SC, Jana S, Lau MWS (1994) A technical review of the laser drilling of aerospace materials. J Mater Process Technol 42(1):15–49Google Scholar
  253. 253.
    Yilbas BS, Yilbas Z (1987) Parameters affecting hole geometry in laser drilling of Nimonic 75. SPIE 744:87–91Google Scholar
  254. 254.
    Yilbas BS (1988) Investigation into drilling speed during laser drilling of metals. Opt Laser Technol 20(1):29–32CrossRefGoogle Scholar
  255. 255.
    Yilbas BS (1997) Parametric study to improve laser hole drilling process. J Mater Process Technol 70:264–273CrossRefGoogle Scholar
  256. 256.
    Yilbas BS (2004) Laser cutting quality assessment and thermal efficiency analysis. J Mater Process Technol 155–156:2106–2115CrossRefGoogle Scholar
  257. 257.
    Yousef BF, Knopf GK, Bordatchev EV, Nikumb SK (2003) Neural network modeling and analysis of the material removal process during laser machining. Int J Adv Manuf Technol 22(1–2):41–53CrossRefGoogle Scholar
  258. 258.
    Yu ZY, Rajurkar KP, Shen H (2002) High aspect ratio and complex shaped blind micro-holes by micro-EDM. CIRP Ann Manuf Technol 51(1):359–362CrossRefGoogle Scholar
  259. 259.
    Yuan J, Wang K, Yu T, Fang M (2008) Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int J Mach Tools Manuf 48(1):47–60CrossRefGoogle Scholar
  260. 260.
    Zaki M, Corre C, Kuszla P, Chinesta F (2008) Numerical simulation of the abrasive waterjet (AWJ) machining: multi-fluid solver validation and material removal model presentation. Int J Mater Forming 1(1):1403–1406CrossRefGoogle Scholar
  261. 261.
    Zaman MT, Kumar AS, Rahman MS, Sreeram A (2006) Three dimensional analytical cutting force model for micro-end milling operation. Int J Mach Tools Manuf 46(3–4):353–366CrossRefGoogle Scholar
  262. 262.
    Zheng ZP, Lin JK, Huang FY, Yan BW (2008) Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage. J Micromech Microeng 18:24–36Google Scholar
  263. 263.
    Zhu K, Wong YS, Hong GS (2009) Multi-category micro-milling tool wear monitoring with continuous hidden Markov models. Mech Syts Signal Proc 23(2):547–560CrossRefGoogle Scholar
  264. 264.
    Zuperl U, Cus F (2003) Optimization of cutting conditions during cutting by using neural networks. Rob Comput Integr Manuf 19:189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentSV National Institute of TechnologySuratIndia

Personalised recommendations