Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 3380 Accesses

Abstract

Manufacturing is the backbone of any industrialized nation. Its importance is emphasized by the fact that, as an economic activity, it comprises approximately 20–30% of the value of all goods and services produced. A country’s level of manufacturing activity is directly related to its economic health. In general, the higher the level of manufacturing activity in a country, the higher the standard of living of its people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Box GEP, Draper NR (1987) Empirical model-building and response surface. Wiley, New York

    Google Scholar 

  2. Montgomery DC, Peck EA (1992) Introduction to linear regression analysis. Wiley, New York

    MATH  Google Scholar 

  3. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50:15–34

    Article  Google Scholar 

  4. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  5. Zimmerman HJ (1976) Description and optimization of fuzzy system. Int J Gen Syst 2:209–215

    Article  Google Scholar 

  6. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern, SMC 3:28–44

    Article  MathSciNet  MATH  Google Scholar 

  7. Rao SS (1987) Description and optimum design of fuzzy mechanical systems. J Mech Transm Autom Des 109:126–132

    Article  Google Scholar 

  8. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46:445–464

    Article  Google Scholar 

  9. Shin YC, Vishnupad P (1996) Neuro fuzzy control of complex manufacturing processes. Int J Prod Res 34:3291–3309

    Article  MATH  Google Scholar 

  10. Dixit PM, Dixit US (2008) Modeling of metal forming and machining processes: by finite element and soft computing methods. Springer-Verlag, London

    Google Scholar 

  11. Coit DW, Jackson BT, Smith AE (1998) Static neural network process models: considerations and case studies. Int J Prod Res 36:2953–2967

    Article  MATH  Google Scholar 

  12. Deng JL (1989) Introduction to grey system theory. J Grey Syst 1:1–24

    MATH  Google Scholar 

  13. Deng JL (2005) The primary methods of grey system theory. Huazhong University of Science and Technology Press, Wuhan

    Google Scholar 

  14. Kuo Y, Yang T, Huang GW (2008) The use of grey relational analysis in solving multi attribute decision making problems. Comput Ind Eng 55:80–93

    Article  Google Scholar 

  15. Fung CP (2003) Manufacturing process optimization for wear property of fiber-reinforced polybutylene terephthalate composites with grey relational analysis. Wear 254:298–306

    Article  Google Scholar 

  16. Rao RV (2007) Decision making in the manufacturing environment using graph theory and fuzzy multiple attribute decision making methods. Springer-Verlag, London

    Google Scholar 

  17. Saaty TL (2000) Fundamentals of decision making and priority theory with AHP. RWS Publications, Pittsburg

    Google Scholar 

  18. Taguchi G (1962) Tables of orthogonal arrays and linear graphs. Maruzen, Tokyo

    Google Scholar 

  19. Taguchi G (1990) Introduction to quality engineering. McGraw-Hill, New York

    Google Scholar 

  20. Oktem H, Erzurumlu T, Col M (2006) A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces. Int J Adv Manuf Technol 28:694–700

    Article  Google Scholar 

  21. Phadke MS (1989) Quality engineering using robust design. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  22. Ross PJ (1988) Taguchi techniques for quality engineering. McGraw-Hill, New York

    Google Scholar 

  23. Montgomery DC (1997) Design and analysis of experiments. Wiley, New York

    MATH  Google Scholar 

  24. Baş D, Boyacı IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  Google Scholar 

  25. Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    MATH  Google Scholar 

  26. Carlyle WM, Montgomery DC, Runger GC (2000) Optimization problems and method in quality control and improvement. J Qual Technol 32:1–17

    Google Scholar 

  27. Cakir MC, Cavdar K (2006) Development of a knowledge-based expert system for solving metal cutting problems. Mater Des 27:1027–1034

    Article  Google Scholar 

  28. Chrysslouris G, Wright K (1986) Knowledge based systems in manufacturing. CIRP Ann Manuf Technol 35:437–440

    Google Scholar 

  29. Osakada K, Kado T (1988) Application of AI techniques to process planning of cold forging. CIRP Ann Manuf Technol 37:239–242

    Article  Google Scholar 

  30. Pearson K (1901) On lines and planes of closest fit to systems of points in spaces. Philos Mag Ser 6(2):559–572

    Article  Google Scholar 

  31. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Article  Google Scholar 

  32. Fung CP, Kang PC (2005) Multi-response optimization in friction properties of PBT composites using Taguchi method and principal component analysis. J Mater Process Technol 170:602–610

    Article  Google Scholar 

  33. Ding M, Tian Z, Xu H (2010) Adaptive kernel principal component analysis. J Signal Process 90:1542–1553

    Article  MATH  Google Scholar 

  34. Sârbu C, Pop HF (2005) Principal component analysis versus fuzzy principal component analysis: a case study: the quality of Danube water (1985–1996). Talanta 65:1215–1220

    Article  Google Scholar 

  35. Hillier FS, Liebermann GJ (1999) Operations research. CBS Publishers, New Delhi

    Google Scholar 

  36. Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton, New Jersey

    MATH  Google Scholar 

  37. Phillips DT, Ravindran A, Solberg JJ (1976) Operations research: principles and practice. Wiley, New York

    MATH  Google Scholar 

  38. Rao SS (1978) Optimization theory and applications. Wiley Eastern Limited, New York

    Google Scholar 

  39. Wilde DJ, Beightler CS (1967) Foundations of optimization. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  40. Wolfe P (1963) Methods of nonlinear programming. McGraw Hill, New York

    Google Scholar 

  41. Abadie J, Carpenter J (1969) Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. Academic Press, London

    Google Scholar 

  42. Avriel M (1976) Nonlinear programming: methods and analysis. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  43. Lasdon LS, Waren AD, Jain A, Ratner M (1978) Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans Math Software 4:34–39

    Article  MATH  Google Scholar 

  44. Duffin RJ, Peterson E, Zener C (1967) Geometric programming. Wiley, New York

    MATH  Google Scholar 

  45. Schittkowski K (1986) NLPQL: a FORTRAN subroutine solving constrained non-linear programming problem. Ann Oper Res 5:485–500

    MathSciNet  Google Scholar 

  46. Land AH, Doig A (1960) An automatic method for solving discrete programming problems. Econometrica 28:497–520

    Article  MathSciNet  MATH  Google Scholar 

  47. Dakin RJ (1965) A true search algorithm for mixed integer programming problems. Comput J 8(3):250–255

    Article  MathSciNet  MATH  Google Scholar 

  48. Holland JH (1975) Adaptation in neural and artificial systems. University of Michigan Press, Ann Arbour

    Google Scholar 

  49. Deb K (2002) Multi-objective optimization using evolutionary algorithm. Wiley, Chichester

    Google Scholar 

  50. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  Google Scholar 

  51. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  52. Rao RV, Pawar PJ, Davim JP (2010) Optimization of process parameters of mechanical type advanced machining processes sing a simulated annealing algorithm. Int J Mater Prod Technol 37(1/2):83–101

    Article  Google Scholar 

  53. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549

    Article  MathSciNet  MATH  Google Scholar 

  54. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  55. Dong Y, Tang J, Xu B, Wang D (2005) An application of swarm optimization to nonlinear programming. Comput Math Appl 49:1655–1668

    Article  MathSciNet  MATH  Google Scholar 

  56. Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971

    Article  MATH  Google Scholar 

  57. Tripathi P, Bandopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf Sci 177:5033–5049

    Article  MATH  Google Scholar 

  58. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern 26:29–41

    Article  Google Scholar 

  59. Gajpal Y, Rajendran C (2006) An ant colony optimization algorithm for minimizing the completion time variance of jobs in flowshops. Int J Prod Econ 101:259–272

    Article  Google Scholar 

  60. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697

    Article  Google Scholar 

  61. Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms. Appl Soft Comput 10:445–456

    Article  Google Scholar 

  62. Rao RV, Pawar PJ (2009) Modeling and optimization of process parameters of wire electric discharge machining. J Eng Manuf 223:1431–1440

    Article  Google Scholar 

  63. de Castro LN, Timmis J (1996) Artificial immune systems: a new computational intelligence approach. Springer-Verlag, London

    Google Scholar 

  64. de Castro LN, Von Zuben FJ (2002) Learning and optimization using clonal section principle. IEEE Trans Evol Comput 6:239–251

    Article  Google Scholar 

  65. Emma H, Jon T (2008) Application areas of AIS: the past, the present and the future. Appl Soft Comput 8:191–201

    Article  Google Scholar 

  66. Rodin V, Benzinou A, Guillaud A, Ballet P, Harrouet F, Tisseau J, Le Bihan J (2004) An immune oriented multi-agent system for biological image processing. Pattern Recognit 37:631–645

    Article  Google Scholar 

  67. Qiao Z, Xu X, Liang YC (2006) An improved artificial immune algorithm with a dynamic threshold. J Bionic Eng 3:93–97

    Article  Google Scholar 

  68. Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based optimization algorithms. Adv Eng Inf 19:43–53

    Article  Google Scholar 

  69. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38:129–154

    Article  MathSciNet  Google Scholar 

  70. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  71. Wang ZG, Rahman M, Wong YS, Sun J (2005) Optimization of multi-pass milling using parallel genetic algorithm and parallel genetic simulated annealing. Int J Mach Tools Manuf 45:1726–1734

    Article  Google Scholar 

  72. Yildiz AR (2009) A novel hybrid immune algorithm for optimization of machining parameters in milling operations. Rob Comput Integr Manuf 25:261–270

    Article  Google Scholar 

  73. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report 826. California Institute of Technology, Pasadena, CA

    Google Scholar 

  74. Sadegheih A (2009) Optimization of network planning by the novel hybrid algorithms of intelligent optimization techniques. Energy 34:1539–1551

    Article  Google Scholar 

  75. Oysu C, Bingul Z (2009) Application of heuristic and hybrid-GASA algorithms to tool-path optimization problem for minimizing airtime during machining. Eng Appl Artif Intell 22(3):389–396

    Article  Google Scholar 

  76. Zhang X, Tang L (2009) A new hybrid ant colony optimization algorithm for the vehicle routing problem. Pattern Recognit Lett 30(9):848–855

    Article  Google Scholar 

  77. Ho WH, Tsai JT, Lin BT, Chou JH (2009) Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Sys Appl 36(2):3216–3222

    Article  Google Scholar 

  78. Liao TW (2010) Two hybrid differential evolution algorithms for engineering design optimization. Appl Soft Comput. doi:10.1016/j.asoc.2010.05.007

  79. Luis VSQ, Alfredo GHD, Julián M, Coello CAC, Caballero R (2010) DEMORS: a hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems. Comput Oper Res 37(3):470–480

    Article  MathSciNet  MATH  Google Scholar 

  80. Hui S (2010) Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm. Eng Appl Artif Intell 23(1):27–33

    Article  Google Scholar 

  81. Wang L, Pan QK, Tasgetiren MF (2010) Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert Sys Appl. doi:10.1016/j.eswa.2010.04.042

  82. Lozano M, Martínez CG (2010) Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: overview and progress report. Comput Oper Res 37:481–497

    Article  MathSciNet  MATH  Google Scholar 

  83. Song Q, Kho KP, See KH (1999) Implementation of two-dimensional systolic algorithms for multi-layered neural networks. J Syst Arch 45(14):1209–1218

    Article  Google Scholar 

  84. Lin XH, Kwok YK, Lau VKN (2003) A genetic algorithm based approach to route selection and capacity flow assignment. Comput Commun 26(9):961–974

    Article  Google Scholar 

  85. Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) Multi-objective parameter estimation of induction motor using particle swarm optimization. Eng Appl Artif Intell 23(3):302–312

    Article  Google Scholar 

  86. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346(4):328–348

    Article  MathSciNet  MATH  Google Scholar 

  87. Zarei O, Fesanghary M, Farshi B, Saffar RJ, Razfar MR (2009) Optimization of multipass face-milling via harmony search algorithm. J Mater Process Technol 209:2386–2392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkata Rao .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rao, R.V. (2011). Overview. In: Advanced Modeling and Optimization of Manufacturing Processes. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-0-85729-015-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-015-1_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-014-4

  • Online ISBN: 978-0-85729-015-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics