Wavelet Transforms and Their Applications pp 489-516 | Cite as

# Wavelet Transform Analysis of Turbulence

Chapter

First Online:

## Abstract

Considerable progress has been made over the last three decades in our understanding of turbulence through new developments of theory, experiment, and computation. More and more evidence has been accumulated for the physical description of turbulent motions in both two and three dimensions. Consequently, turbulence is now characterized by a remarkable degree of order even though turbulence is usually defined as disordered fluid flows.

## Keywords

Stokes Equation Vortex Tube Inertial Range Coherent Vortex Koch Curve
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Bibliography

- Anselmet, F., Gagne, Y., Hopfinger, E.J., and Antonia, R.A. (1984), High-order velocity structure functions in turbulent shear flows,
*J. Fluid Mech.***140**, 63–89.Google Scholar - Argoul, F., Arnéodo, A., Elezgaray, J., Grasseau, G., and Murenzi, R. (1988), Wavelet transform of fractal aggregates,
*Phys. Lett.***A135**, 327–333.Google Scholar - Argoul, F., Arnéodo, A., E1ezgaray, J., Grasseau, G., and Murenzi, R. (1990), Wavelet transform analysis of self-similarity of diffusion limited aggregate and electro-deposition clusters,
*Phys. Rev.***A41**, 5537–5560.Google Scholar - Batchelor, G.K. (1967),
*The Theory of Homogeneous Turbulence*, Cambridge University Press, Cambridge.Google Scholar - Benzi, R., Paladin, G., Parisi, G., and Vulpiani, A. (1984), On the multifractal nature of fully developed turbulence and chaotic systems,
*J. Phys.***A17**, 3521–3531.Google Scholar - Benzi, R. and Vergassola, M. (1991), Optimal wavelet transform and its application to two-dimensional turbulence,
*Fluid Dyn. Res.***8**, 117–126.Google Scholar - Chandrasekhar, S. (1949), On Heisenberg’s elementary theory of turbulence,
*Proc. Roy. Soc. London***A200**, 20–33.Google Scholar - Debnath, L. (1978),
*Oceanic Turbulence*, Memoir Series of the Calcutta Mathematical Society, Calcutta.Google Scholar - Debnath, L. (1998a), Wavelet transforms, fractals, and turbulence, in
*Nonlinear Instability, Chaos, and Turbulence*, Vol. I, (Ed. L. Debnath and D.N. Riahi), Computational Mechanics Publications, WIT Press, Southampton, England.Google Scholar - Debnath, L. (1998b), Brief introduction to history of wavelets,
*Internat. J. Math. Edu. Sci. Tech.***29**, 677–688.Google Scholar - Everson, R., Sirovich, L., and Sreenivasan, K.R. (1990), Wavelet analysis of turbulent jet,
*Phys. Lett.***A145**, 314–319.Google Scholar - Falconer, K.J. (1990),
*Fractal Geometry, Mathematical Foundations and Applications*, John Wiley, Chichester.MATHGoogle Scholar - Farge, M. (1992), Wavelet transforms and their applications to turbulence,
*Ann. Rev. Fluid Mech.***24**, 395–457.Google Scholar - Farge, M., Goirand, E., Meyer, Y., Pascal, F., and Wickerhauser, M.V. (1992), Improved predictability of two-dimensional turbulent flows using wavelet packet compression,
*Fluid Dyn. Res.***10**, 229–242.Google Scholar - Farge, M., Guezenne, J., Ho, C.M., and Meneveau, C. (1990),
*Continuous Wavelet Analysis of Coherent Structures*, Proceedings of the Summer Progress Centre for Turbulence Research, Stanford University-NASA Ames, 331–398.Google Scholar - Farge, M. and Holschneider, M. (1989), Analysis of two-dimensional turbulent flow,
*Proc. Scaling, Fractals, and Nonlinear Variability in Geophysics II*, Barcelona.Google Scholar - Farge, M. and Holschneider, M. (1990a), Interpolation of two-dimensional turbulence spectrum in terms of singularity in the vortex cores,
*Europhys. Lett.***15**, 737–743.Google Scholar - Farge, M., Holschneider, M., and Colonna, J.F. (1990b), Wavelet analysis of coherent structures in two-dimensional turbulent flows, in
*Topological Fluid Mechanics*(Ed. A.K. Moffatt and A. Tsinober), Cambridge University Press, Cambridge, 765–766.Google Scholar - Farge, M., Kevlahan, N., Perrier, V., and Goirand, E. (1996), Wavelets and turbulence,
*Proc. IEEE***84**(4), 639–669.Google Scholar - Farge, M., Kevlahan, N., Perrier, V., and Schneider, K. (1999a), Turbulence analysis, modelling and computing using wavelets,
*Wavelets in Physics*(Ed. J.e. van den Berg), Cambridge University Press, Cambridge, 117–200.Google Scholar - Farge, M., Schneider, K., and Kevlahan, N. (1999b), Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthonormal wavelet basis,
*Phys. Fluids***11**(8), 2187–2201.CrossRefMATHMathSciNetGoogle Scholar - Farge, M. and Rabreau, G. (1988), Transformé en ondelettes pour detecter et analyser les structures cohérentes dans les ecoulements turbulents bidimensionnels,
*C.R. Acad. Sci. Paris Ser.*II**307**, 1479–1486.Google Scholar - Farge, M. and Rabreau, G. (1989), Wavelet transform to analyze coherent structures in two-dimensional turbulent flows,
*Proceedings on Scaling, Fractals and Nonlinear Variability in Geophysics I*, Paris.Google Scholar - Frisch, U. and Parisi, G. (1985), On the singularity structure of fully developed turbulence, in
*Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics*(Ed. M. Ghil, R. Benzi, and G. Parisi), North Holland, Amsterdam, 84–125.Google Scholar - Frisch, U., Sulem, P.L., and Nelkin, M. (1978), A simple dynamical model of intermittent fully developed turbulence,
*J. Fluid Mech.***87**, 719–736.Google Scholar - Frisch, U. and Vergassola, M. (1991), A prediction of the multifractal model; the intermediate dissipation range,
*Europhys. Lett.***14**, 439–450.Google Scholar - Frisch, U. (1995),
*Turbulence. The Legacy of A.N. Kolmogorov*, Cambridge University Press, Cambridge.MATHGoogle Scholar - Fröhlich, J. and Schneider, K. (1997), An adaptive wavelet-vaguelette algorithm for the solution of PDEs,
*J. Comput. Phys.***130**, 174–191.Google Scholar - Gagne, Y. and Castaing, B. (1991), A universal non-globally self-similar representation of the energy spectra in fully developed turbulence,
*C.R. A cad. Sci.*Paris,**312**, 414–430.Google Scholar - Grant, H.L., Stewart, R.W., and Moilliet, A. (1962), Turbulence spectra from a tidal channel,
*J. Fluid Mech.***12**, 241–268.Google Scholar - Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., and Shraiman, B.l. (1986), Fractal measures and their singularities: The characterization of strange sets,
*Phys. Rev.***A33**, 1141–1151.Google Scholar - Heisenberg, W. (1948a), Zur statistischen theori der turbulenz,
*Z. Phys.***124**, 628–657.Google Scholar - Heisenberg, W. (1948b), On the theory of statistical and isotropic turbulence,
*Proc. Roy. Soc. London***A195**, 402–406.Google Scholar - Hunt, J.C.R. and Vassilicos, J.C. (1991), Kolmogorov’s contributions to the physical and geometrical understanding of small-scale turbulence and recent developments,
*Proc. Roy. Soc. London***A434**, 183–210.Google Scholar - Kolmogorov, A.N. (1941a), The local structure of turbulence in an incompressible fluid with very large Reynolds numbers,
*Dokl. Akad. Nauk. SSSR***30**, 301–305.Google Scholar - Kolmogorov, A.N. (1941b), Dissipation of energy under locally isotropic turbulence,
*Dokl. Akad. Nauk. SSSR***32**, 16–18.Google Scholar - Kolmogorov, A.N. (1962), A refinement of previous hypotheses concerning the local structure of turbulence of a viscous incompressible fluid at high Reynolds numbers,
*J. Fluid Mech.***13**, 82–85.Google Scholar - Leonard, A. (1974), Energy cascade in large eddy simulations of turbulent fluid flows,
*Adv. Geophys.***18A**, 237–249.Google Scholar - Lin, C.C. (1948), Note on the law of decay of isotropic turbulence,
*Proc. Nat. Acad. Sci.*U.S.A.,**34**, 230–233.Google Scholar - Mandelbrot, B.B. (1974), Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier.
*J. Fluid Mech.***62**, 331–358.Google Scholar - Mandelbrot, B.B. (1975), On the geometry of homogeneous turbulence with stress on the fractal dimension of the iso-surfaces of scalars,
*J. Fluid Mech.***72**, 401–420.Google Scholar - Mandelbrot, B.B. (1982),
*The Fractal Geometry of Nature*, W.H. Freeman, New York.MATHGoogle Scholar - Meneveau, C. (1991), Analysis of turbulence in the orthonormal wavelet representation,
*J. Fluid Mech.***232**, 469–520.Google Scholar - Meneveau, C. (1993), Wavelet analysis of turbulence: The mixed energy cascade, in
*Wavelets, Fractals, and Fourier Transforms*(Ed. M. Farge, J.C.R. Hunt, and J.e. Vassilicos), Oxford University Press, Oxford, 251–264.Google Scholar - Meneveau, C. and Sreenivasan, K.R. (1987a), Simple multifractal cascade model for fully developed turbulence,
*Phys. Rev. Lett.***59**, 1424–1427.Google Scholar - Meneveau, C. and Sreenivasan, K.R. (1987b), In
*Physics of Chaos and Systems Far From Equilibrium*(Ed. M.D. Van, and B. Nichols), Nucl. Phys. B, North Holland, Amsterdam, 2–49.Google Scholar - Métais, O. and Lesieur, M. (1992), Spectral large-eddy simulation of isotropic and stably stratified turbulence,
*J. Fluid Mech.***239**, 157–194.Google Scholar - Moffatt, H.K. (1984), Simple topological aspects of turbulent vorticity dynamics, in
*Turbulence and Chaotic Phenomena in Fluids*(Ed. T. Tatsumi), Elsevier, New York, 223–230.Google Scholar - Monin, A.S. and Yaglom, A.M. (1975),
*Statistical Fluid Mechanics: Mechanics of Turbulence*, Vol. 2, MIT Press, Cambridge.Google Scholar - Oboukhov, A.M. (1941), On the distribution of energy in the spectrum of turbulent flow,
*Dokl. Akad. Nauk. SSSR***32**, 19–21.Google Scholar - Perrier, V., Philipovitch, T., and Basdevant, C. (1995), Wavelet spectra compared to Fourier spectra,
*J. Math. Phys.***36**, 1506–1519.Google Scholar - Sarker, S.K. (1985), Generalization of singularities in nonlocal dynamics,
*Phys. Rev.***A31**, 3468–3472.Google Scholar - Schneider, K. and Farge, M. (1997), Wavelet forcing for numerical simulation of two-dimensional turbulence,
*C.R. Acad. Sci. Paris Série II***325**, 263–270.Google Scholar - Schneider, K. and Farge, M. (2000), Computing and analyzing turbulent flows using wavelets, in
*Wavelet Transforms and Time-Frequency Signal Analysis*(Ed. L. Debnath), Birkhäuser, Boston, 181–216.Google Scholar - Schwarz, K.W. (1990), Evidence for organized small-scale structure in fully developed turbulence,
*Phys. Rev. Lett.***64**, 415–418.Google Scholar - Sen, N.R. (1951), On Heisenberg’s spectrum of turbulence,
*Bull. Cal. Math. Soc.***43**, 1–7.Google Scholar - Sen, N.R. (1958), On decay of energy spectrum of isotropic turbulence,
*Proc. Natl. Inst. Sci. India***A23**, 530–533.Google Scholar - She, Z.S., Jackson, E., and Orszag, S.A. (1991), Structure and dynamics of homogeneous turbulence, models and simulations,
*Proc. Roy. Soc. London***A434**, 101–124.Google Scholar - Sreenivasan, K.R. (1991), Fractals and multifractals in fluid turbulence,
*Ann. Rev. Fluid Mech.***23**, 539–600.Google Scholar - Sreenivasan, K.R. and Meneveau, C. (1986), The fractal facets of turbulence,
*J. Fluid Mech.***173**, 357–386.Google Scholar - Thomson, Sir William and Tait, P.G. (1879), Treatise on natural philosophy, Cambridge University Press, New edition:
*Principles of Mechanics and Dynamics*(1962), Dover Publications, New York.Google Scholar - Vassilicos, J.C (1992), The multi-spiral model of turbulence and intermittency, in
*Topological Aspects of the Dynamics of Fluids and Plasmas*, Kluwer, Amsterdam, 427–442.Google Scholar - Vassilicos, J.C (1993), Fractals in turbulence, in
*Wavelets, Fractals and Fourier Transforms: New Developments and New Applications*, (Ed. M. Farge, J.CR. Hunt, and J.C Vassilicos), Oxford University Press, Oxford, 325–340.Google Scholar - Vassilicos, J.C and Hunt, J.CR. (1991), Fractal dimensions and spectra of interfaces with applications to turbulence,
*Proc. Roy. Soc. London***A435**, 505–534.Google Scholar - Vincent A. and Meneguzzi, M. (1991), The spatial structure and statistical properties of homogeneous turbulence,
*J. Fluid Mech.***225**, 1–20.Google Scholar

## Copyright information

© Springer Science+Business Media New York 2015