Brief Historical Introduction

  • Lokenath Debnath
  • Firdous Ahmad Shah


Historically, Joseph Fourier (1770–1830) first introduced the remarkable idea of expansion of a function in terms of trigonometric series without giving any attention to rigorous mathematical analysis.


Coherent State Discrete Wavelet Transform Wavelet Packet Multiresolution Analysis Ambiguity Function 


  1. Albeverio, S., Evdokimov, S., and Skopina, M. (2010), p-Adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl. 16, 693–714.Google Scholar
  2. Almeida, L. B. (1994), The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42, 3084–3091.Google Scholar
  3. Alpert, B. K. (1993), A class of basis in L 2 for the sparse representation of integral operators, SIAM J. Math. Anal. 24, 246–262.Google Scholar
  4. Aslaksen, E.W. and Klauder, J.R. (1968), Unitary representations of the affine group, J. Math. Phys. 9, 206–211.Google Scholar
  5. Aslaksen, E.W. and Klauder, J.R. (1969), Continuous representation theory using the affine group, J. Math. Phys. 10, 2267–2275.Google Scholar
  6. Auslander, L. and Tolimieri, R. (1985), Radar ambiguity functions and group theory, SIAM J. Math. Anal. 16, 577–601.Google Scholar
  7. Bacchelli, S., Cotronei, M., and Sauer, T. (2002), Wavelets for multichannel signals, Adv. Appl. Math. 29(4), 581–598.Google Scholar
  8. Battle, G. (1987), A block spin construction of ondelettes, Part 1: Lemarié functions, Commun. Math. Phys. 110, 601–615.Google Scholar
  9. Behera, B. and Jahan, Q. (2012a), Wavelet packets and wavelet frame packets on local fields of positive characteristic, J. Math. Anal. Appl. 395, 1–14.Google Scholar
  10. Behera, B. and Jahan, Q. (2012b), Multiresolution analysis on local fields and characterization of scaling functions, Adv. Pure Appl. Math. 3, 181–202.Google Scholar
  11. Benedetto, J. J. and Benedetto, R. L. (2004), A wavelet theory for local fields and related groups, J. Geomet. Anal. 14, 423–456.Google Scholar
  12. Bertrand, J. and Bertrand, P. (1992), A class of affine Wigner functions with extended covariance properties, J. Math. Phys. 33, 2515–2527.Google Scholar
  13. Beylkin, G. (1992), On the representation of operators in bases of compactly supported wavelets, SIAM J. Numer. Anal. 29, 1716–1740.Google Scholar
  14. Beylkin, G., Coifman, R., and Rokhlin, V. (1991), Fast wavelet transforms and numerical algorithms, Commun. Pure Appl. Math. 44, 141–183.Google Scholar
  15. Boashash, B. (1992), Time-Frequency Signal Analysis, Methods and Applications, Wiley-Halsted Press, New York.Google Scholar
  16. Burt, P. and Adelson, E. (1983a), The Laplacian pyramid as a compact image code, IEEE Trans. Commun. 31, 482–540.Google Scholar
  17. Burt, P. and Adelson, E. (l983b), A multiplication spline with application to image mosaics, ACM Trans. Graphics 2, 217–236.Google Scholar
  18. Candés, E. and Donoho, D. (1999a), Ridgelets: A key to higher-dimensional intermittency?. Phil. Trans. R. Soc. London A. 357, 2495–2509.Google Scholar
  19. Candés, E. and Donoho, D. (1999b), Curvelets - a surprisingly effective nonadaptive representation for objects with edges, in Curves and Surface Fitting, Cohen et al. Eds, Vanderbilt University Press, Nashville, 105–120.Google Scholar
  20. Candés, E. and Donoho, D. (2003a), Continuous curvelet transform-I: Resolution of the wavefront set, Appl. Comput. Harmon. Anal. 19, 162–197.Google Scholar
  21. Candés, E. and Donoho, D. (2003b), Continuous curvelet transform-II: Discretization and frames, Appl. Comput. Harmon. Anal. 19, 198–222.Google Scholar
  22. Chen, Q. and Cheng, Z. X. (2007), A study on compactly supported orthogonal vector-valued wavelets and wavelet packets, Chaos, Solit. Fract. 34(4), 1024–1034Google Scholar
  23. Chen, Q., Cao, H., and Shi, Z. (2009), Construction and characterizations of orthogonal vector-valued multivariate wavelet packets, Chaos, Solit. Fract. 40, 1835–1844.Google Scholar
  24. Chui, C. K. and Li, C. (1993a), Non-orthogonal wavelet packets, SIAM J. Math. Anal. 24(3), 712–738.Google Scholar
  25. Chui, C. K. and Li, J. A. (1996), A study of orthonormal multiwavelets, J. Appl. Numer. Math. 20, 273–298.Google Scholar
  26. Chui, C.K. and Wang, J.Z. (1991), A cardinal spline approach to wavelets, Proc. Amer. Math. Soc. 113, 785–793.Google Scholar
  27. Chui, C.K. and Wang, J.Z. (1992), On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc. 330, 903–915.Google Scholar
  28. Claasen, T.A.C.M. and Mecklenbräuker, W.F.G. (1980), The Wigner distribution-A tool for time-frequency signal analysis, Part I: Continuous time signals; Part II: Discrete time signals; Part III: Relations with other time-frequency signal transformations, Philips J. Res. 35, 217–250; 276–300; 372–389.Google Scholar
  29. Cohen, A., Daubechies, I., and Feauveau, J. (1992), Biorthogonal basis of compactly supported wavelets, Commun. Pure and Appl. Math. 45, 485–560.CrossRefMATHMathSciNetGoogle Scholar
  30. Cohen, A. and Daubechies, I. (1993), On the instability of arbitrary biorthogonal wavelet packets, SIAM J. Math. Anal. 24 (5), 1340–1354.Google Scholar
  31. Coifman, R.R., Jones, P., and Semees, S. (1989), Two elementary proofs on the L 2 boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2, 553–564.Google Scholar
  32. Coifman, R.R., Meyer, Y., and Wickerhauser, M.V. (1992a), Wavelet analysis and signal processing, in Wavelets and Their Applications (Ed. M.B. Ruskai et al.), Jones and Bartlett, Boston, 153–178.Google Scholar
  33. Coifman, R. R., Meyer, Y., Quake, S., and Wickerhauser, M. V. (1990), Signal processing and compression with wavelet packets, Technical Report, Yale University.Google Scholar
  34. Coifman, R.R., Meyer, Y., and Wickerhauser, M.V. (1992b), Size properties of wavelet packets, in Wavelets and Their Applications, (Ed. M.B. Ruskai et al.), Jones and Bartlett, Boston, 453–470.Google Scholar
  35. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H. G., and Teschke, G. (2008), The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process. 6(2), 157–181.Google Scholar
  36. Daubechies, I. (1988a), Time-frequency localization operators: A geometric phase space approach, IEEE Trans. Inform. Theory 34, 605–612.Google Scholar
  37. Daubechies, I. (1988b), Orthogonal bases of compactly supported wavelets, Commun. Pure Appl. Math. 41, 909–996.Google Scholar
  38. Daubechies, I. (1990), The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36, 961–1005.Google Scholar
  39. Daubechies, I. (1992), Ten Lectures on Wavelets, NSF-CBMS Regional Conference Series in Applied Math. 61, SIAM Publications, Philadelphia.Google Scholar
  40. Daubechies, I., Grossmann, A., and Meyer, Y. (1986), Painless nonorthogonal expansion, J. Math. Phys. 27, 1271–1283.Google Scholar
  41. Daubechies, I., Han, B., Ron, A., and Shen, Z. (2003), Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14, 1–46.Google Scholar
  42. Daubechies, I. and Lagarias, J. (1992), Two-scale difference equations II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23, 1031–1055.Google Scholar
  43. De Bruijn, N.G. (1967), Uncertainty principles in Fourier analysis, In Inequalities (ed. O. Shisha), Academic Press, Boston, 57–71.Google Scholar
  44. De Bruijn, N.G. (1973), A theory of generalized functions with applications to Wigner distribution and Weyl correspondence, Nieuw. Arch. Voor Wiskunde 21, 205–280.Google Scholar
  45. Debnath, L. (1998c), Wavelet transforms and their applications, Proc. Indian Natl. Sci. Acad. 64A, 685–713.Google Scholar
  46. Debnath, L. and Mikusinski, P. (1999), Introduction to Hilbert Spaces with Applications, Second Edition, Academic Press, Boston.Google Scholar
  47. Demanet, L. and Ying, L. (2007a), Curvelets and wave atoms for mirror-extend images, Proc. SPIE Wavelets XII, San Diego.Google Scholar
  48. Demanet, L. and Ying, L. (2007b), Wave atoms and sparsity of oscillatory patterns, Appl. Comput. Harmon. Anal. 23(3), 368–387.Google Scholar
  49. Do, M. N. and Vetterli, M. (2003), Contourlets, in: Beyond Wavelets, G. V. Welland, Ed., Academic Press, Amsterdam, 83–105.CrossRefGoogle Scholar
  50. Do, M. N. and Vetterli, M. (2005), The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Proc. 14, 2091–2106.Google Scholar
  51. Donoho, D. L. (2000), Wedgelets: Nearly-minimax estimation of edges, Anna. Statist. 27, 859–897.Google Scholar
  52. Duffin, R.I. and Schaeffer, A.C. (1952), A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72, 341–366.Google Scholar
  53. Fernandes, F. (2002), Directional, shift-insensitive, complex wavelet transforms with controllable redundancy, Ph.D Thesis, Rice University.Google Scholar
  54. Fowler, J. E. and Li, H. (2002), Wavelet transforms for vector fields using uni-directionally balanced multiwavelets, IEEE Trans. Signal Process. 50(12), 3018–3027.Google Scholar
  55. Freeman, W. and Adelson, E. (1991), The design and use of steerable filters, IEEE Trans. Pattern Anal. Machine Intell. 13(9), 891–906.Google Scholar
  56. Gabor, D. (1946), Theory of communications, J. Inst. Electr. Eng. London, 93, 429–457.Google Scholar
  57. Gao, X., Nguyen, T. and Strang, G. (2002), A study of two-channel complex-valued filter banks and wavelets with orthogonality and symmetry properties, IEEE Trans. Signal Process. 50(4), 824–833.Google Scholar
  58. Geronimo, J., Hardin, D., and Massopust, P. (1994), Fractal functions and wavelet expansions bases on several scaling functions, J. Approx. Theory. 78, 373–401.Google Scholar
  59. Glauber, R.J. (1964), in Quantum Optics and Electronics (Ed. C. de Witt, A. Blandin, and C. Cohen-Tannoudji), Gordon and Breach, New York.Google Scholar
  60. Grossmann, A. and Morlet, J. (1984), Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15, 723–736.Google Scholar
  61. Guo, K., Lim, W-Q., Labate, D., Weiss, G., and Wilson, E. (2006), Wavelets with composite dilations and their MRA properties, Appl. Comput. Harmon. Anal. 20, 202–236.Google Scholar
  62. Holschneider, M. (1988), L’analyse d’objets fractals et leu transformaé en ondelettes, These, Université de Provence, Marseille.Google Scholar
  63. Holschneider, M. and Tchamitchian, P. (1991), Pointwise regularity of Riemann’s “nowhere-differentiable” function, Invent. Math. 105, 157–175.CrossRefMATHMathSciNetGoogle Scholar
  64. Jiang, H. K., Li, D. F., and Jin, N. (2004), Multiresolution analysis on local fields, J. Math. Anal. Appl. 294, 523–532.Google Scholar
  65. Kessler, B. (2000), A construction of orthogonal compactly supported multiwavelets on 2, Appl. Comput. Harmon. Anal. 9, 146–165.Google Scholar
  66. Khrennikov, A. Yu., Shelkovich, V. M., and Skopina, M. (2009), p-Adic refinable functions and MRA-based wavelets, J. Approx. Theory. 161, 226–238.Google Scholar
  67. Kingsbury, N. (1999), Image processing with complex wavelets, Phil. Trans. R. Soc. London A. 357, 2543–2560.CrossRefMATHGoogle Scholar
  68. Kingsbury, N. (2001), Complex wavelets for shift invariant analysis and filtering of signals, Appl. Comput. Harmon. Anal. 10(3), 234–253.Google Scholar
  69. Kozyrev, S. V. (2002), Wavelet analysis as a p-adic spectral analysis, Izv. Akad. Nauk, Ser. Mat. 66(2), 149–158.Google Scholar
  70. Kutyniok, G. and Labate, D. (2009), Resolution of the wavefront set using continuous shearlets, Trans. Amer. Math. Soc. 361, 2719–2754.Google Scholar
  71. Lawton, W. (1993), Applications of complex valued wavelet transforms to subband decomposition, IEEE Trans. Sig. Proc. 41(12), 3566–3568.Google Scholar
  72. Lemarié, P.G. (1988), Une nouvelle base d’ondelettes de L 2( n), J. Math. Pure Appl. 67, 227–236.Google Scholar
  73. Lemarié, P.G. (1989), Bases d’ondelettes sur les groupes de Lie stratifiés, Bull. Soc. Math. France 117, 211–232.Google Scholar
  74. Lemarié, P.G. and Meyer, Y. (1986), Ondelettes et bases hilbertiennes, Rev. Mat. Iberoam. 2, 1–18.Google Scholar
  75. Li, D. F. and Jiang, H. K. (2008), The necessary condition and sufficient conditions for wavelet frame on local fields, J. Math. Anal. Appl. 345, 500–510.Google Scholar
  76. Lian, Q. F. (2004), Wavelets and wavelet packets related to a class of dilation matrices, Acta Math. Sinica. 5, 1–14.Google Scholar
  77. Long, R. and Chen, W. (1997), Wavelet basis packets and wavelet frame packets, J. Fourier Anal. Appl. 3, 239–256.Google Scholar
  78. Lu, Y. and Do, M. N. (2007), Multidimensional directional filter banks and surfacelets, IEEE Trans. Image Process. 16(4), 918–931.Google Scholar
  79. Mallat, S. (1988), Multiresolution representation and wavelets, Ph.D. Thesis, University of Pennsylvania.Google Scholar
  80. Mallat, S. (1989a), Multiresolution approximations and wavelet orthonormal basis of L 2(), Trans. Amer. Math. Soc. 315, 69–88.Google Scholar
  81. Mallat, S. (1989b), A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Patt. Recog. And Mach. Intelt. 11, 678–693.Google Scholar
  82. Malvar, H.S. (1990a), Lapped transforms for efficient transforms/subband coding, IEEE Trans. Acoust. Speech Signal Process. 38, 969–978.Google Scholar
  83. Malvar, H. (1990b), The design of two-dimensional filters by transformations, Seventh Annual Princeton Conference on ISS, Princeton University Press, Princeton, New Jersey, 247, 251–264.Google Scholar
  84. Mecklenbräuker, W. and Hlawatsch, F. (1997), The Wigner Distribution, Elsevier, Amsterdam.MATHGoogle Scholar
  85. Mendlovic, D., Zalevsky, Z., Mas, D., García, J., and Ferreira, C. (1997), Fractional wavelet transform, Appl. Opt. 36, 4801–4806.Google Scholar
  86. Meyer, Y. (1990), Ondelettes et opérateurs, tomes I, II, and III, Herman, Paris.Google Scholar
  87. Meyer, Y. (1993a), Wavelets, Algorithms and Applications (translated by R.D. Ryan), SIAM Publications, Philadelphia.Google Scholar
  88. Micchelli, C. (1991), Using the refinement equation for the construction of prewavelets, Numer. Alg. 1, 75–116.Google Scholar
  89. Morlet, J., Arens, G., Fourgeau, E., and Giard, D. (1982a), Wave propagation and sampling theory, Part I: Complex signal land scattering in multilayer media, J. Geophys. 47, 203–221.Google Scholar
  90. Morlet, J., Arens, G., Fourgeau, E., and Giard, D. (1982b), Wave propagation and sampling theory, Part II: Sampling theory and complex waves, J. Geophys. 47, 222–236.Google Scholar
  91. Neumann, J. and Steidl, G. (2005), Dual-tree complex wavelet transform in the frequency domain and an application to signal classification, Int. J. Wavelet. Multiresol. Inform. Process. 3, 43–66.Google Scholar
  92. Ozaktas, H. M., Zalevsky, Z., and Kutay, M. A. (2000), The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley, New York.Google Scholar
  93. Quak, E. and Weyrich, N. (1997a), Algorithms for trigonometric wavelet packets, Appl. Comput. Harmon. Anal. 4, 74–96.Google Scholar
  94. Quak, E. and Weyrich, N. (1997b), Algorithms for spline wavelet packets on an interval, BIT. 37, 76–95.Google Scholar
  95. Schempp, W. (1984), Radar ambiguity functions, the Heisenberg group and holomorphic theta series, Proc. Amer. Math. Soc. 92, 103–110.Google Scholar
  96. Sejdić, E., Djurović, I., and Stanković, L. (2011), Fractional Fourier transform as a signal processing tool: an overview of recent developments, Signal Process. 91, 1351–1369.Google Scholar
  97. Selesnick, I. W. (2001), Hilbert transform pairs of wavelet bases, IEEE Sig. Proc. Letters. 8(6), 170–173.Google Scholar
  98. Shah, F. A. (2009), Construction of wavelet packets on p-adic field, Int. J. Wavelets Multiresolut. Inf. Process. 7(5), 553–565.Google Scholar
  99. Shah, F. A. and Debnath, L. (2011b), p-Wavelet frame packets on a half-line using the Walsh-Fourier transform, Integ. Transf. Special Funct. 22(12), 907–917.Google Scholar
  100. Shah, F. A. and Debnath, L. (2013), Tight wavelet frames on local fields, Analysis. 33, 293–307.CrossRefMATHMathSciNetGoogle Scholar
  101. Shen, Z. (1995), Non-tensor product wavelet packets in L 2( s), SIAM J. Math. Anal. 26(4), 1061–1074.Google Scholar
  102. Slavakis, K. and Yamada, I. (2001), Biorthogonal unconditional bases of compactly supported matrix valued wavelets, Numer. Funct. Anal. Optim. 22, 223–253.Google Scholar
  103. Spaendonck, R., Fernandes, F., Coates, M., and Burrus, C. (2000), Non-redundant, directionally selective, complex wavelets, IEEE Proc. Int. Conf. Image Proc. 379–382.Google Scholar
  104. Sun, Q., Bi, N., and Huang, D. (2001), A Introduction to Multiband Wavelets, Zhejiang University Press, China.Google Scholar
  105. Tchamitchan, P. (1987), Biorthogonalité et théorie des opérateurs, Rev. Mat., Iberoam. 3, 163–189.Google Scholar
  106. Tham, J. Y., Shen, L., Lee, S. L., and Tan, H. H. (1998), Good multifilter properties: a new tool for understanding multiwavelets, in: Proc. Int. Conf. Image Science, System and Tech., Las Vegas, 52–59.Google Scholar
  107. Vetterli, M. and Herley, C. (1992), Wavelet and filter banks: theory and design, IEEE Trans. Signal Process. 40, 2207–2232.Google Scholar
  108. Wigner, E.P. (1932), On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749–759.Google Scholar
  109. Wilcox, C. (1960), The synthesis problem for radar ambiguity functions, MRC Technical Report 157, Mathematics Research Center, U.S. Army, University of Wisconsin, Madison.Google Scholar
  110. Woodward, P.M. (1953), Probability and Information Theory, with Applications to Radar, Pergamon Press, London.MATHGoogle Scholar
  111. Xia, X. G. and Suter, B.W (1996), Vector-valued wavelets and vector filter banks, IEEE Trans. Signal Process. 44(3), 508–518.Google Scholar
  112. Xiao-Feng, W., Gao, H., and Feng, J. (2009), The characterization of vector-valued multivariate wavelet packets associated with a dilation matrix, Chaos, Solit. Fract. 42, 1959–1966.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lokenath Debnath
    • 1
  • Firdous Ahmad Shah
    • 2
  1. 1.Department of MathematicsUniversity of Texas, Pan AmericanEdinburgUSA
  2. 2.Department of MathematicsUniversity of KashmirAnantnagIndia

Personalised recommendations