Skip to main content

Convexity and Related Classic Inequalities

  • Chapter
  • First Online:
  • 2448 Accesses

Abstract

Concepts of convexity and related techniques are widely used in various branches of mathematics and in applications such as functional analysis, calculus of variations, and mathematical physics, geometry, number theory, theory of games, optimization and other computational methods and convex programming, integral geometry (tomography), and many others. In this chapter we will focus mainly on the basic elements of the theory of convex functions, which can be taught to readers with limited experience. The remaining problems are directed toward specific applications such as convex and linear programming, hierarchy of power means, geometric inequalities, the Hölder and Minkowski inequalities, Young’s inequality and the Legendre transform, and functions on metric and normed vector spaces. The necessary introductory material is provided in these sections. A specially added section discusses the widely known Cauchy-Schwarz-Bunyakovskii (CSB) inequality and Lagrange-type identities in connection with the hierarchy of the power means.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This definition allows disconnected polyhedrons and unions of polyhedrons intersecting along edges of codimensions greater than one. Examples are polyhedrons with a common vertex and polyhedrons obtained by partitioning faces (with the corresponding partition and addition of edges of all dimensions) into smaller ones, which would count as different.

  2. 2.

    Proving these claims, obvious for planar polygons, requires more sophisticated methods for dimensions greater than two. Working on this problem will help the reader in learning those methods because most real-life problems are of high dimensions.

  3. 3.

    For advanced readers, the proper name for these shapes is n-dimensional submanifolds with piecewise-planar boundaries.

  4. 4.

    The first example is a special case of the second one.

  5. 5.

    In an infinite-dimensional case, the hyperplanes of support are required to be closed.

  6. 6.

    Actually, there are discontinuous linear functionals on any topological vector space (a vector space over either the real or the complex field of scalars supplied with a topology so that with respect to it the summation of vectors and multiplication of them by scalars become continuous operations) possessing a base of neighborhoods of zero of a cardinality not exceeding the algebraic dimension of the space. Indeed, following sources such as Kirillov and Gvishiani (1988), let U \( \mapsto \) e U be an injective map on this base to any fixed basis of our space and k U be positive numbers such that k U e U U, ∀U (k U cannot be chosen without the famous axiom of choice, but of course we accept it). A linear functional f taking values k U −1 on the corresponding e U and arbitrary values on the rest of the basis is discontinuous since the set {f < 1}, which is the preimage of (an open) neighborhood of zero in ℝ, includes no U and so cannot be a neighborhood of zero in our space. [We leave it to readers familiar with the elements of general topology to work out the details, including the fact that any neighborhood of zero in a topological vector space contains vectors of all directions (in fact, contains some half-interval [0, α v v) of the rectilinear ray spanned on any vector v (α v  > 0)), which follows from the continuity of the multiplication by scalars. We must warn readers, however, that the definition of a topological vector space uses a linguistic trick: a vector space of positive dimension with discrete topology (which means that every subset is open) is a topological Abelian group (with respect to the summation of vectors) but is not a topological vector space.]

  7. 7.

    This theorem, due to I.M. Gelfand, is analogous to the Banach-Steinhaus theorem for linear operators.

  8. 8.

    Advanced readers probably know that in infinite-dimensional analysis, compactness does not mean the same as boundedness + closure. A topological space is compact if and only if every infinite subset has a limit point. Readers may prove this using the common definition of compactness that they are familiar with or find it in a textbook on general topology, for example, Hausdorff (1914) or Bourbaki (1960). Use this equivalent definition to prove the statement about the compactness of the convex hull of a compact set.

  9. 9.

    Readers may provide examples.

  10. 10.

    Hyperplanes F 1,…,F m are in a general position when codim ⋂F i  = m, or, in other words (why?), the vectors orthogonal to F i are linearly independent. Among the faces containing a vertex, there are always n faces in a general position, because otherwise the intersection would have a positive dimension and not be a vertex.

  11. 11.

    Actually, those definitions are dual with each other, as discussed in section H9.5, so their equivalence means self-duality (autoduality) of the simplicial shape.

  12. 12.

    A similar result (without exact estimates) may be obtained by using the continuity of a scalar product.

  13. 13.

    The famous Hahn-Banach theorem states, in one of its geometrical versions, that a closed convex set has hyperplanes of support at all its face points. It can be proved with no regard for the compactness, which allows multiple applications in infinite-dimensional analysis, where boundedness + closure ≠ compactness. (In infinite-dimensional problems, mostly closed hyperplanes of support are considered.) For this reason, the Hahn-Banach theorem is usually learned in courses on functional analysis. Readers seeking more information may consult Dunford and Schwartz (1957), Hille and Phillips (1957), Yosida (1965), (Riesz and Nagy 1972), Edwards (1965), Reed and Simon (1972), Rudin (1973), Kolmogorov and Fomin (1976), Rockafellar (1970), and Kutateladze and Rubinov (1976).

  14. 14.

    Advanced readers probably know that this statement is generalized for any analytic function (a one, representable by the sum of a convergent power series in a neighborhood of any point of its domain): an analytic function on an open connected set will be equal to zero on the entire domain if it equals zero on its open subset. Interested readers will find more details in Dieudonné (1960).

References

  • Arnol’d, V.I.: Обыкновенные дифференциальные уравнения. “Наука” Press, Moscow (1975). [English transl. Ordinary Differential Equations. MIT Press, Cambridge (1978)]

    Google Scholar 

  • Arnol’d, V.I.: Дополнительные главы теории обыкновенных дифференциальных уравнений. “Наука” Press, Moscow (1978). Геометрические методы в теории обыкновенных дифференциальных уравнений. Regular & Chaotic Dynamics, 2nd edn. MCNMO/VMK NMU (1999). [English transl. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin/Heidelberg (2004)]

    Google Scholar 

  • Arnol’d, V.I.: Математические методы классической механики. 3rd edn. “Наука” Press, Moscow (1989). [English transl. Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, No 60). 2nd edn. Springer (1989)]

    Google Scholar 

  • Arnol’d, V.I.: Что такое математика (What is Mathematics)? МЦНМО Press, Moscow (2002). Russian

    Google Scholar 

  • Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Особенности дифференцируемых отображений Т.1. “Наука” Press, Moscow (1982). [English transl. Singularities of Differentiable Maps. V.1. The Classification of Critical Points, Caustic and Wave Fronts. Boston (1985)]

    Google Scholar 

  • Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley-Interscience, New York/Chichester/Brisbane/Toronto/Singapore (1984)

    MATH  Google Scholar 

  • Balakrishnan, A.V.: Applied Functional Analysis. Springer, New York/Heidelberg/Berlin (1976)

    MATH  Google Scholar 

  • Beckenbach, E.F., Bellman, R.: Inequalities. Springer, Berlin/Göttingen/Heidelberg (1961)

    Book  Google Scholar 

  • Bourbaki, N.: Éléments de mathématique. Premiére partie. Livre III. Topologie générale. Hermann, Paris (1960)

    Google Scholar 

  • Bourbaki, N.: Éléments de mathématique. Espaces vectoriels topologiques, 2nd edn. Masson, Paris (1981)

    MATH  Google Scholar 

  • Burago, D.M., Zalgaller, V.A.: Геометрические неравенства. “Наука” Press, Leningrad (1980). [English transl. Geometric Inequalities (Grundlehren Der Mathematischen Wissenschaften, 285 a Series of Comprehensive Studies in Mathematics). Springer (1988)]

    Google Scholar 

  • Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin/Göttingen/Heidelberg (1959)

    Book  MATH  Google Scholar 

  • Cassels, J.W.S.: Rational Quadratic Forms. Academic, London/New York/San Francisco (1978)

    MATH  Google Scholar 

  • Céa, J.: Optimisation. Théorie et algorithmes. Dunod, Paris (1971)

    MATH  Google Scholar 

  • Chentzov, N.D., Shklarsky, D.O., Yaglom, I.M.: Геометрические нервенства и задачи на максимум и минимум (Geometric Inequalities and Problems on Maximum and Minimum). “Наука” Press, Moscow (1970). Russian

    Google Scholar 

  • Collatz, L.: Funktionalanalysis und Numerische Mathematik. Die Grundlehren Der Mathematischen Wissenschaften, vol. 120. Springer, Berlin/Göttingen/Heidelberg (1964)

    Book  MATH  Google Scholar 

  • Dieudonné, J.: Foundation of Modern Analysis. Academic, New York/London (1960)

    Google Scholar 

  • Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. Wiley-Interscience, New York (1957)

    Google Scholar 

  • Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York/Chicago/San Francisco/Toronto/London (1965)

    MATH  Google Scholar 

  • Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland/American Elsevier, Amsterdam/Oxford/New York (1976)

    MATH  Google Scholar 

  • Fichtengoltz, G.M.: Курс дифференциального и интегрального исчисления (Course in Differential and Integral Calculus), vol. 1–3, 7th edn. “Наука” Press, Moscow (1970). Russian

    Google Scholar 

  • Florian, A.: Zu einem Satz von P. Erdös. Elemente der Mathematik 13(3), 55–58 (1958)

    MathSciNet  MATH  Google Scholar 

  • Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge/New York/Melbourne (1995)

    MATH  Google Scholar 

  • Gelbaum, B.R., Olmsted, J.M.H.: Counterexamples in Analysis. Holden-Day, San Francisco/London/Amsterdam (1964)

    MATH  Google Scholar 

  • Gelfand, I.M., Shilov, G.E., Vilenkin, N.Ya., Graev, N.I.: Обобщённые функции, ТТ. 1–5. “Наука” Press, Moscow (1959–1962). [English transl. Generalized Functions. V.’s 1–5. Academic Press (1964)]

    Google Scholar 

  • Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  • Hausdorff, F.: Grundzüge der Mengenlehre. Von Veit, Leipzig (1914). [English transl. Set Theory, 2nd edn. Chelsea, New York (1962)]

    Google Scholar 

  • Helgason, S.: The Radon Transform. Progress in Mathematics, vol. 5. Birkhaüsser, Boston/Basel/Stuttgart (1980)

    MATH  Google Scholar 

  • Helgason, S.: Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions. Academic (Harcourt Brace Jovanovich), Orlando/San Diego/San Francisco/New York/London/Toronto/Montreal/Tokyo/São Paulo (1984)

    MATH  Google Scholar 

  • Herman, G.T., Tuy, H.K., Langenberg, K.J., Sabatier, P.C.: Basic Methods of Tomography and Inverse Problems. Adam Gilger, Bristol/Philadelphia (1987)

    MATH  Google Scholar 

  • Hilbert, D., Cohn-Vossen, S.: Anschauliche Geometrie. Berlin (1932). [English transl. Geometry and the Imagination, 2nd edn. Chelsea, New York (1990)]

    Google Scholar 

  • Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. AMS Colloquium Publications, vol. XXX1. American Mathematical Society, Providence (1957). Rev. ed

    Google Scholar 

  • Kantorovich, L.V., Akilov, G.P.: Функциональный анализ, 2nd edn. “Наука” Press, Moscow (1972). [English transl. Functional Analysis. Pergamon Press, Oxford, XIV (1982)]

    Google Scholar 

  • Kazarinoff, N.D.: Geometric Inequalities. Random House, New York/Toronto (1961)

    Google Scholar 

  • Kirillov, A.A., Gvishiani, A.D.: Теоремы и задачи функционального анализа, 2nd edn. “Наука” Press, Moscow (1988). [English transl. from the 1st edn. Theorems and Problems in Functional Analysis (Problem Books in Mathematics). Springer, NY/Heidelberg/Berlin (1982)]

    Google Scholar 

  • Kolmogorov, A.N., Fomin, S.V.: Элементы теории функций и функционального анализа, 4th edn. “Наука” Press, Moscow (1976). [English transl. Elements of the Theory of Functions and Functional Analysis (Dover Books on Mathematics). Dover Publ. Inc (1999)]

    Google Scholar 

  • Krasnoselskii, M.A., Vainikko, G.M., Zabreyko, P.P., Rutitskii, Ya.B., Stetzenko, V.Ya.: Приближённые решения операторных уравнений. “Nauka” Press, Moscow (1969). [English transl. Approximate Solutions of Operator Equations. Wolters-Nordhoff, Groningen (1972)]

    Google Scholar 

  • Krein, S.G., ed. coaut.: Функциональный анализ (Справочная математическая библиотека) 2nd rev. edn. “Наука” Press, Moscow 1972). [English transl. of the 1st edn. Functional Analysis. Foreign Technology Division MT-65-573. U.S. Dept. Commerce, Nat. Bur. Standards, Washington/DC; microfiche distr. by Clearinghouse for Federal Sci. Tech. Inform., Springfield/VA, MR 38 #2560 (1968)]

    Google Scholar 

  • Kutateladze, S.S., Rubinov, A.M.: Двойственность Минковского и её приложения (Minkowski Duality and its Applications). “Наука” Press, Novosibirsk (1976). Russian

    Google Scholar 

  • Lelong-Ferrand, J.: Les fondements de la géometrie. Presses Universitaires de France (1985 French)

    Google Scholar 

  • Lenhard, H.-C.: Verallgemeinerung und Verschärfung der Erdös-Mordellschen Satz für Polygone. Archiv der Mathematik 12, 311–314 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  • Leuenberger, F.: Zum Mordellschen Beweis einer Ungleichung von Erdös. Elemente der Mathematik 17, 15–17 (1962)

    Google Scholar 

  • Luce, R.D., Raiffa, H.: Games and Decisions. Introduction and Critical Survey. Wiley/Chapman&Hall, New York/London (1957)

    MATH  Google Scholar 

  • Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston (1964)

    MATH  Google Scholar 

  • Moulin, H.: Théorie des jeux pour l’économie et la politique. Collection méthdes. Hermann, Paris (1981)

    Google Scholar 

  • Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Institute of Mathematical Sciences, New York University, New York (1974)

    MATH  Google Scholar 

  • Polya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton/New Jersey (1951)

    MATH  Google Scholar 

  • Polya, G., & Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Springer, Göttingen/Heidelberg/New York (1964). [English transl. Problems and Theorems in Analysis I, II. Springer, Reprint edition (1998)]

    Google Scholar 

  • Reed, M., Simon, B.: Methods of Modern Mathematical Physics. V.1: Functional Analysis. Academic, New York/London (1972)

    Google Scholar 

  • Riesz, F. & Sz.-Nagy, B.: Leçons d’analyse fonctionnnelle. Sixtème edition, Budapest (1972). [English transl. Functional Analysis. Dover (1990)]

    Google Scholar 

  • Robinson, A., Roytvarf, A.: Computerized tomography for non-destructive testing. EU 99971130, 2–2218 (2001)

    Google Scholar 

  • Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton/New Jersey (1970)

    MATH  Google Scholar 

  • Rudin, W.: Functional Analysis. McGraw-Hill, New York/St. Louis/San Francisco/Düsseldorf/Johannesburg/London/Mexico/Montreal/New Delhi/Panama/Rio de Janeiro/Singapore/Sydney/Toronto (1973)

    MATH  Google Scholar 

  • Schmidt, W.M.: In: Dold, A., Eckmann, B. (eds.) Diophantine Approximations. Lecture Notes in Mathematics, vol. 785. Springer, Berlin/Heidelberg/New York (1980)

    Google Scholar 

  • Tóth, L.F.: Inequalities concerning polygons and polyhedra. Duke math. J. 15, 817–822 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • Vogler, H.: Eine Bemerkung zum Erdös-Mordellschen Satz für Polygone. Anz. Österr. Akad. Wiss., Math.- naturwiss. Klasse 103, 241–251 (1966)

    Google Scholar 

  • von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton/New Jersey (1953)

    MATH  Google Scholar 

  • Yosida, K.: Functional Analysis. Die Grundlehren Der Mathematischen Wissenschaften, vol. 123. Springer, Berlin/Göttingen/Heidelberg (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roytvarf, A.A. (2013). Convexity and Related Classic Inequalities. In: Thinking in Problems. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8406-8_9

Download citation

Publish with us

Policies and ethics