Advertisement

Convexity and Related Classic Inequalities

  • Alexander A. Roytvarf
Chapter

Abstract

Concepts of convexity and related techniques are widely used in various branches of mathematics and in applications such as functional analysis, calculus of variations, and mathematical physics, geometry, number theory, theory of games, optimization and other computational methods and convex programming, integral geometry (tomography), and many others. In this chapter we will focus mainly on the basic elements of the theory of convex functions, which can be taught to readers with limited experience. The remaining problems are directed toward specific applications such as convex and linear programming, hierarchy of power means, geometric inequalities, the Hölder and Minkowski inequalities, Young’s inequality and the Legendre transform, and functions on metric and normed vector spaces. The necessary introductory material is provided in these sections. A specially added section discusses the widely known Cauchy-Schwarz-Bunyakovskii (CSB) inequality and Lagrange-type identities in connection with the hierarchy of the power means.

Keywords

Convex Function Convex Hull Convex Domain Vector Subspace Convex Polyhedron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arnol’d, V.I.: Обыкновенные дифференциальные уравнения. “Наука” Press, Moscow (1975). [English transl. Ordinary Differential Equations. MIT Press, Cambridge (1978)]Google Scholar
  2. Arnol’d, V.I.: Дополнительные главы теории обыкновенных дифференциальных уравнений. “Наука” Press, Moscow (1978). Геометрические методы в теории обыкновенных дифференциальных уравнений. Regular & Chaotic Dynamics, 2nd edn. MCNMO/VMK NMU (1999). [English transl. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin/Heidelberg (2004)]Google Scholar
  3. Arnol’d, V.I.: Математические методы классической механики. 3rd edn. “Наука” Press, Moscow (1989). [English transl. Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, No 60). 2nd edn. Springer (1989)]Google Scholar
  4. Arnol’d, V.I.: Что такое математика (What is Mathematics)? МЦНМО Press, Moscow (2002). RussianGoogle Scholar
  5. Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Особенности дифференцируемых отображений Т.1. “Наука” Press, Moscow (1982). [English transl. Singularities of Differentiable Maps. V.1. The Classification of Critical Points, Caustic and Wave Fronts. Boston (1985)]Google Scholar
  6. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley-Interscience, New York/Chichester/Brisbane/Toronto/Singapore (1984)MATHGoogle Scholar
  7. Balakrishnan, A.V.: Applied Functional Analysis. Springer, New York/Heidelberg/Berlin (1976)MATHGoogle Scholar
  8. Beckenbach, E.F., Bellman, R.: Inequalities. Springer, Berlin/Göttingen/Heidelberg (1961)CrossRefGoogle Scholar
  9. Bourbaki, N.: Éléments de mathématique. Premiére partie. Livre III. Topologie générale. Hermann, Paris (1960)Google Scholar
  10. Bourbaki, N.: Éléments de mathématique. Espaces vectoriels topologiques, 2nd edn. Masson, Paris (1981)MATHGoogle Scholar
  11. Burago, D.M., Zalgaller, V.A.: Геометрические неравенства. “Наука” Press, Leningrad (1980). [English transl. Geometric Inequalities (Grundlehren Der Mathematischen Wissenschaften, 285 a Series of Comprehensive Studies in Mathematics). Springer (1988)]Google Scholar
  12. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin/Göttingen/Heidelberg (1959)MATHCrossRefGoogle Scholar
  13. Cassels, J.W.S.: Rational Quadratic Forms. Academic, London/New York/San Francisco (1978)MATHGoogle Scholar
  14. Céa, J.: Optimisation. Théorie et algorithmes. Dunod, Paris (1971)MATHGoogle Scholar
  15. Chentzov, N.D., Shklarsky, D.O., Yaglom, I.M.: Геометрические нервенства и задачи на максимум и минимум (Geometric Inequalities and Problems on Maximum and Minimum). “Наука” Press, Moscow (1970). RussianGoogle Scholar
  16. Collatz, L.: Funktionalanalysis und Numerische Mathematik. Die Grundlehren Der Mathematischen Wissenschaften, vol. 120. Springer, Berlin/Göttingen/Heidelberg (1964)MATHCrossRefGoogle Scholar
  17. Dieudonné, J.: Foundation of Modern Analysis. Academic, New York/London (1960)Google Scholar
  18. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. Wiley-Interscience, New York (1957)Google Scholar
  19. Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York/Chicago/San Francisco/Toronto/London (1965)MATHGoogle Scholar
  20. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland/American Elsevier, Amsterdam/Oxford/New York (1976)MATHGoogle Scholar
  21. Fichtengoltz, G.M.: Курс дифференциального и интегрального исчисления (Course in Differential and Integral Calculus), vol. 1–3, 7th edn. “Наука” Press, Moscow (1970). RussianGoogle Scholar
  22. Florian, A.: Zu einem Satz von P. Erdös. Elemente der Mathematik 13(3), 55–58 (1958)MathSciNetMATHGoogle Scholar
  23. Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge/New York/Melbourne (1995)MATHGoogle Scholar
  24. Gelbaum, B.R., Olmsted, J.M.H.: Counterexamples in Analysis. Holden-Day, San Francisco/London/Amsterdam (1964)MATHGoogle Scholar
  25. Gelfand, I.M., Shilov, G.E., Vilenkin, N.Ya., Graev, N.I.: Обобщённые функции, ТТ. 1–5. “Наука” Press, Moscow (1959–1962). [English transl. Generalized Functions. V.’s 1–5. Academic Press (1964)]Google Scholar
  26. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934)Google Scholar
  27. Hausdorff, F.: Grundzüge der Mengenlehre. Von Veit, Leipzig (1914). [English transl. Set Theory, 2nd edn. Chelsea, New York (1962)]Google Scholar
  28. Helgason, S.: The Radon Transform. Progress in Mathematics, vol. 5. Birkhaüsser, Boston/Basel/Stuttgart (1980)MATHGoogle Scholar
  29. Helgason, S.: Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions. Academic (Harcourt Brace Jovanovich), Orlando/San Diego/San Francisco/New York/London/Toronto/Montreal/Tokyo/São Paulo (1984)MATHGoogle Scholar
  30. Herman, G.T., Tuy, H.K., Langenberg, K.J., Sabatier, P.C.: Basic Methods of Tomography and Inverse Problems. Adam Gilger, Bristol/Philadelphia (1987)MATHGoogle Scholar
  31. Hilbert, D., Cohn-Vossen, S.: Anschauliche Geometrie. Berlin (1932). [English transl. Geometry and the Imagination, 2nd edn. Chelsea, New York (1990)]Google Scholar
  32. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. AMS Colloquium Publications, vol. XXX1. American Mathematical Society, Providence (1957). Rev. edGoogle Scholar
  33. Kantorovich, L.V., Akilov, G.P.: Функциональный анализ, 2nd edn. “Наука” Press, Moscow (1972). [English transl. Functional Analysis. Pergamon Press, Oxford, XIV (1982)]Google Scholar
  34. Kazarinoff, N.D.: Geometric Inequalities. Random House, New York/Toronto (1961)Google Scholar
  35. Kirillov, A.A., Gvishiani, A.D.: Теоремы и задачи функционального анализа, 2nd edn. “Наука” Press, Moscow (1988). [English transl. from the 1st edn. Theorems and Problems in Functional Analysis (Problem Books in Mathematics). Springer, NY/Heidelberg/Berlin (1982)]Google Scholar
  36. Kolmogorov, A.N., Fomin, S.V.: Элементы теории функций и функционального анализа, 4th edn. “Наука” Press, Moscow (1976). [English transl. Elements of the Theory of Functions and Functional Analysis (Dover Books on Mathematics). Dover Publ. Inc (1999)]Google Scholar
  37. Krasnoselskii, M.A., Vainikko, G.M., Zabreyko, P.P., Rutitskii, Ya.B., Stetzenko, V.Ya.: Приближённые решения операторных уравнений. “Nauka” Press, Moscow (1969). [English transl. Approximate Solutions of Operator Equations. Wolters-Nordhoff, Groningen (1972)]Google Scholar
  38. Krein, S.G., ed. coaut.: Функциональный анализ (Справочная математическая библиотека) 2nd rev. edn. “Наука” Press, Moscow 1972). [English transl. of the 1st edn. Functional Analysis. Foreign Technology Division MT-65-573. U.S. Dept. Commerce, Nat. Bur. Standards, Washington/DC; microfiche distr. by Clearinghouse for Federal Sci. Tech. Inform., Springfield/VA, MR 38 #2560 (1968)]Google Scholar
  39. Kutateladze, S.S., Rubinov, A.M.: Двойственность Минковского и её приложения (Minkowski Duality and its Applications). “Наука” Press, Novosibirsk (1976). RussianGoogle Scholar
  40. Lelong-Ferrand, J.: Les fondements de la géometrie. Presses Universitaires de France (1985 French)Google Scholar
  41. Lenhard, H.-C.: Verallgemeinerung und Verschärfung der Erdös-Mordellschen Satz für Polygone. Archiv der Mathematik 12, 311–314 (1961)MathSciNetMATHCrossRefGoogle Scholar
  42. Leuenberger, F.: Zum Mordellschen Beweis einer Ungleichung von Erdös. Elemente der Mathematik 17, 15–17 (1962)Google Scholar
  43. Luce, R.D., Raiffa, H.: Games and Decisions. Introduction and Critical Survey. Wiley/Chapman&Hall, New York/London (1957)MATHGoogle Scholar
  44. Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston (1964)MATHGoogle Scholar
  45. Moulin, H.: Théorie des jeux pour l’économie et la politique. Collection méthdes. Hermann, Paris (1981)Google Scholar
  46. Nirenberg, L.: Topics in Nonlinear Functional Analysis. Courant Institute of Mathematical Sciences, New York University, New York (1974)MATHGoogle Scholar
  47. Polya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton/New Jersey (1951)MATHGoogle Scholar
  48. Polya, G., & Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Springer, Göttingen/Heidelberg/New York (1964). [English transl. Problems and Theorems in Analysis I, II. Springer, Reprint edition (1998)]Google Scholar
  49. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. V.1: Functional Analysis. Academic, New York/London (1972)Google Scholar
  50. Riesz, F. & Sz.-Nagy, B.: Leçons d’analyse fonctionnnelle. Sixtème edition, Budapest (1972). [English transl. Functional Analysis. Dover (1990)]Google Scholar
  51. Robinson, A., Roytvarf, A.: Computerized tomography for non-destructive testing. EU 99971130, 2–2218 (2001)Google Scholar
  52. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton/New Jersey (1970)MATHGoogle Scholar
  53. Rudin, W.: Functional Analysis. McGraw-Hill, New York/St. Louis/San Francisco/Düsseldorf/Johannesburg/London/Mexico/Montreal/New Delhi/Panama/Rio de Janeiro/Singapore/Sydney/Toronto (1973)MATHGoogle Scholar
  54. Schmidt, W.M.: In: Dold, A., Eckmann, B. (eds.) Diophantine Approximations. Lecture Notes in Mathematics, vol. 785. Springer, Berlin/Heidelberg/New York (1980)Google Scholar
  55. Tóth, L.F.: Inequalities concerning polygons and polyhedra. Duke math. J. 15, 817–822 (1948)MathSciNetMATHCrossRefGoogle Scholar
  56. Vogler, H.: Eine Bemerkung zum Erdös-Mordellschen Satz für Polygone. Anz. Österr. Akad. Wiss., Math.- naturwiss. Klasse 103, 241–251 (1966)Google Scholar
  57. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton/New Jersey (1953)MATHGoogle Scholar
  58. Yosida, K.: Functional Analysis. Die Grundlehren Der Mathematischen Wissenschaften, vol. 123. Springer, Berlin/Göttingen/Heidelberg (1965)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Alexander A. Roytvarf
    • 1
  1. 1.Rishon LeZionIsrael

Personalised recommendations