# One-Parameter Groups of Linear Transformations

• Alexander A. Roytvarf
Chapter

## Abstract

A one-parameter linear group in a vector space L is a continuous map $$g:t\mapsto {g^t}=g(t)$$ on the space of parameters ℝ, taking values in a space of the linear operators on L and having the following properties: (1) g 0 = E and (2) the sum of parameter values corresponds to the composition $${g^{s+t }}={g^s}\circ {g^t}$$. Thus, one-parameter linear groups in ℝ are the continuous solutions of the functional equations g(0) = 1, g(t + s) = g(t)g(s). As is well known, exponential functions satisfy these equations. After solving the first problems in this chapter, readers will find that the continuous solutions are all exponential and, thus, will extract the usual properties of exponential functions from these functional equations (which corresponds to a real historical development).

The second part of the chapter is devoted to proper generalizations for one-parameter matrix groups. Readers will find that all of them are given by the matrix exponential series, as in the one-dimensional case. However, a multidimensional picture looks much more complicated. Working on these problems will familiarize readers with matrix analysis. In addition, readers may need familiarity with some tools used by number theory and the theory of differential equations, such as Euclid’s algorithm, Chinese remainder theorem, and Poincaré’s recurrence theorem; we introduce and discuss these tools.

In the third part of the chapter readers will find some elementary classic applications of one-parameter matrix groups in differential equation theory (Liouville formula), in complex analysis (e.g., complex exponential functions, Euler’s formula), for finite-dimensional functional spaces (spaces of quasipolynomials), and others. Readers will see how to deal with these problems using elementary tools of analysis and linear algebra.

Further, part of this chapter contains problems for readers possessing more advanced preliminary experience (although we introduce and discuss the necessary tools). While working on these problems, readers will come across many interesting things regarding analysis and linear algebra and become acquainted with important concepts (symplectic forms and others).

Readers will encounter far-reaching advances and applications of the subjects considered in the present chapters in powerful mathematical theories: of differential equations, Lie groups, and group representations (a guide to the literature is provided).

## Keywords

Problem Group Numerical Series Great Common Divisor Exponential Series Less Common Multiple
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. Adams, J.F.: Lectures on Lie Groups. W.A. Benjamin, New York/Amsterdam (1969)Google Scholar
2. Alperin, J.L., Bell, R.B.: Groups and Representations. Graduate Texts in Mathematics, 1st edn. Springer, New York (1995)Google Scholar
3. Arnol’d, V.I.: Обыкновенные дифференциальные уравнения. “Наука” Press, Moscow (1975). [English transl. Ordinary Differential Equations. MIT Press, Cambridge (1978)]Google Scholar
4. Arnol’d, V.I.: Дополнительные главы теории обыкновенных дифференциальных уравнений. “Наука” Press, Moscow (1978). Геометрические методы в теории обыкновенных дифференциальных уравнений. Regular & Chaotic Dynamics, 2nd edn. MCNMO/VMK NMU (1999). [English transl. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin/Heidelberg (2004)]Google Scholar
5. Arnol’d, V.I.: Сто задач (One Hundred Problems). МФТИ Press, Moscow (1989). RussianGoogle Scholar
6. Arnol’d, V.I.: Теория катастроф. 3rd edn. “Наука” Press, Moscow (1990). [English transl. Catastrophe Theory. 3rd edn. Springer (1992)]Google Scholar
7. Arnol’d, V.I.: Что такое математика (What is Mathematics)? МЦНМО Press, Moscow (2002). RussianGoogle Scholar
8. Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Особенности дифференцируемых отображений Т.1. “Наука” Press, Moscow (1982). [English transl. Singularities of Differentiable Maps. V.1. The Classification of Critical Points, Caustic and Wave Fronts. Boston (1985)]Google Scholar
9. Arnol’d, V.I., Kozlov V.V., Neishtadt, A.I.: Динамические системы III (Математические аспекты классической и небесной механики). Итоги науки и техники. Современные проблемы математики. Фундаментальные направления, Т.3. ВИНИТИ Press, Moscow (1985). [English transl. Mathematical Aspect of Classical and Celestial Mechanics (Encyclopedia of Mathematical Sciences, V. 3.) 2nd edn. Springer (1993)]Google Scholar
10. Banach, S.: Théorie des operations linéaries. Paris (1932). [English transl. Theory of Linear Operations (Dover Books on Mathematics). Dover (2009)]Google Scholar
11. Borevich, Z.I., Shafarevich, I.R.: Теория чисел. 2nd edn. “Наука” Press, Moscow (1972). [English transl. Number Theory. Academic Press, New York (1986)]Google Scholar
12. Bourbaki, N.: Éléments de mathématique. Groups et algébres de Lie. Hermann, Paris/Masson/New York/Barcelona/Milan/Mexico/Rio de Janeiro (1968–1982)Google Scholar
13. Bredon, G.E.: Introduction to Compact Transformation Groups. Academic, New York/London (1972)Google Scholar
14. Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge University Press, Cambridge (1957)Google Scholar
15. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin/Göttingen/Heidelberg (1959)Google Scholar
17. Chevalley, C.: Theory of Lie Groups I, II, and III. Princeton University Press, Princeton/New Jersey (1946–1955)Google Scholar
18. Dieudonné, J.: Foundation of Modern Analysis. Academic, New York/London (1960)Google Scholar
19. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. Wiley-Interscience, New York (1957)Google Scholar
20. Fermi, E.: Thermodynamics. Prentice Hall, New York (1937)Google Scholar
21. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. V. 1. Addison-Wesley, Reading/Palo Alto/London (1963)Google Scholar
22. Fichtengoltz, G.M.: Курс дифференциального и интегрального исчисления (Course in Differential and Integral Calculus), vol. 1–3, 7th edn. “Наука” Press, Moscow (1970). RussianGoogle Scholar
23. Fuchs, L.: Infinite Abelian Groups. V.1. Academic, New York/London (1970)Google Scholar
24. Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathematics/Readings in Mathematics. Springer, New York (1991)Google Scholar
25. Gelbaum, B.R., Olmsted, J.M.H.: Counterexamples in Analysis. Holden-Day, San Francisco/London/Amsterdam (1964)Google Scholar
26. Gilmore, R.: Catastrophe Theory for Scientists and Engineers. Willey-Interscience, New York/Chichester/Brisbane/Toronto (1981)Google Scholar
27. Halmos, P.R.: A Hilbert Space Problem Book. D. Van Nostrand, Princeton/New Jersey/Toronto/London (1967)Google Scholar
28. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 4th edn. Clarendon, Oxford (1960)Google Scholar
29. Helgason, S.: Differential Geometry and Symmetric Spaces. Academic, New York/London (1962)Google Scholar
30. Hilbert, D.: Grundlagen der Geometrie. Leibzig, Berlin (1930). [English transl. Foundations of Geometry, 2nd edn. Open Court (1988)]Google Scholar
31. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. AMS Colloquium Publications, vol. XXX1. American Mathematical Society, Providence (1957). Rev. edGoogle Scholar
32. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Springer, Berlin/Heidelberg/New York/Tokyo (1983)Google Scholar
33. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1973)Google Scholar
34. Infeld, L.: Whom the Gods Love: The Story of Evariste Galois. National Council of Teachers of Mathematics, Reston (1948)Google Scholar
35. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, vol. 87. Springer, New York/Heidelberg/Berlin (1982)Google Scholar
36. Kirillov, A.A.: Элементы теории представлений. “Наука” Press, Leningrad (1972). [English transl. Elements of the Theory of Representations (Grundlehren Der Mathematischen Wissenschaften). Springer (1976)]Google Scholar
37. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, V.I. Interscience, New York/London (1963)Google Scholar
38. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, V.II. Interscience, New York/London/Sydney (1969)Google Scholar
39. Landau, L.D., Lifshitz, E.M.: Теоретическая физика, Т.5: Статистическая физика. “Наука” Press, Moscow (1976). [English transl. Statistical Physics, 3rd edn. Pergamon Press, Oxford/New York (1979)]Google Scholar
42. Massey, W.S.: Algebraic Topology: An Introduction. Harcourt, Brace & World, New York/Chicago/San Francisco/Atlanta (1967)Google Scholar
43. Milnor, J.W., Husemoller, D.: Symmetric Bilinear Forms. Springer, Berlin/Heidelberg/New York (1973)Google Scholar
44. Naymark, M.A.: Теория представлений групп (Group Representation Theory). “Наука” Press, Moscow (1976). RussianGoogle Scholar
45. Nomizu, K.: Lie Groups and Differential Geometry. Mathematical Society of Japan, Tokyo (1956)Google Scholar
46. Polya, G., & Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Springer, Göttingen/Heidelberg/New York (1964). [English transl. Problems and Theorems in Analysis I, II. Springer, Reprint edition (1998)]Google Scholar
47. Poston, T., Stewart, I.: Catastrophe Theory and its Applications. Pitman, London/San Francisco/Melbourne (1978)Google Scholar
48. Rabbot, J.M.: Тригонометрия (Trigonometry). МГУ Press, Moscow (1969). RussianGoogle Scholar
49. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. V.1: Functional Analysis. Academic, New York/London (1972)Google Scholar
50. Riesz, F. & Sz.-Nagy, B.: Leçons d’analyse fonctionnnelle. Sixtème edition, Budapest (1972). [English transl. Functional Analysis. Dover (1990)]Google Scholar
51. Rudin, W.: Functional Analysis. McGraw-Hill, New York/St. Louis/San Francisco/Düsseldorf/Johannesburg/London/Mexico/Montreal/New Delhi/Panama/Rio de Janeiro/Singapore/Sydney/Toronto (1973)Google Scholar
52. Rumer, Yu.B., Ryvkin, M.Sh.: Термодинамика, статистическая физика и кинетика. “Наука” Press, Moscow (1972). [English transl. Thermodynamics, Statistical Physics and Kinetics. “Mir”, Moscow (1980)]Google Scholar
53. Schmidt, W.M.: In: Dold, A., Eckmann, B. (eds.) Diophantine Approximations. Lecture Notes in Mathematics, vol. 785. Springer, Berlin/Heidelberg/New York (1980)Google Scholar
54. Schutz, B.F.: Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge/London/New York/New Rochelle/Melbourne/Sydney (1982)Google Scholar
55. Schwartz, L., Huet, D.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)Google Scholar
56. Serre, J.-P.: Lie Algebras and Lie Groups (Lectures Given at Harvard University). W.A. Benjamin, New York/Amsterdam (1965)Google Scholar
58. Van der Waerden, B.L.: Ontwakende Wetenschap. P. Noordhoff. Groningen (1950). [English transl. Science Awakening. Groningen (1954)]Google Scholar
59. Van der Waerden, B.L.: Algebra I. Springer, Berlin/Heidelberg/New York (1971)Google Scholar
60. Venkov, B.A.: Элементарная теория чисел. “ОНТИ” Press, Moscow and Leningrad (1937). [English transl. Elementary Number Theory (Translated and edited by H. Alderson). Wolters-Noordhofl, Groningen (1970)]Google Scholar
61. Vilenkin, N.Ya.: Специальные функции и теория представлений групп. “Наука” Press, Moscow (1965). [English transl. Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs 22, American Mathematical Society, Providence/Rhode Island (1968)]Google Scholar
62. Vinogradov, I.M. (ed.): Математическая энциклопедия, ТТ. 1–5. “Совeтская Энциклопедия” Press, Moscow (1977–1984). [English transl. and update. Encyclopedia of Mathematics (1988–1994). Reidel, 10 volumes + supplements (1997-)]Google Scholar
63. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York/Berlin/Heidelberg/Tokyo (1983)Google Scholar
64. Weil, A.: Ľintêgration dans les groupes topologiques et set applications (Integration on topological groups and its applications). Paris (1940 French)Google Scholar
65. Weyl, H.: The Classical Groups. Their Invariants and Representations. The Institute for Advanced Studies (1939)Google Scholar
66. Weyl, H.: Symmetry. Princeton University Press, Princeton/New Jersey (1952)Google Scholar
67. Yosida, K.: Functional Analysis. Die Grundlehren Der Mathematischen Wissenschaften, vol. 123. Springer, Berlin/Göttingen/Heidelberg (1965)Google Scholar