Jacobi Identities and Related Combinatorial Formulas

  • Alexander A. Roytvarf


The derivatives of a quadratic trinomial F = ax 2 + bx + c at its roots x 1, x 2 add up to zero (Vieta’s theorem). Alternatively, we can write this as 1/F′(x 1) + 1/F′(x 2) = 0 or, equivalently, 1/(x 1 − x 2) + 1/(x 2 − x 1) = 0. Also, there is an obvious identity: x 1/(x 1 − x 2) + x 2/(x 2 − x 1) = 1. C.G.J. Jacobi’s concern with questions of dynamics and geometry led him to derive far-reaching generalizations of these identities for polynomials of arbitrary degree, which enabled him to solve several complex problems. For example, he squared an ellipsoid’s surface, determined the geodesics on this surface, and described the dynamics with two motionless centers of gravity. In this chapter, readers will become acquainted with the Jacobi identities and related formulas and their close ties with complex analysis; in addition, they will learn about some less traditional applications of the Jacobi identities (to linear differential equations). The chapter also contains notes about further generalizations and applications and a short guide to the literature.


Fundamental Solution Implicit Function Theorem Jacobi Identity Algebraic Method Recursion Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arnol’d, V.I.: Математические методы классической механики. 3rd edn. “Наука” Press, Moscow (1989). [English transl. Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, No 60). 2nd edn. Springer (1989)]Google Scholar
  2. Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Особенности дифференцируемых отображений Т.1. “Наука” Press, Moscow (1982). [English transl. Singularities of Differentiable Maps. V.1. The Classification of Critical Points, Caustic and Wave Fronts. Boston (1985)]Google Scholar
  3. Arnol’d, V.I., Novikov, S.P. (eds.): Динамические системы IV. Итоги науки и техники. Современные проблемы математики. Фундаментальные направления, Т.4. ВИНИТИ Press, Moscow (1985). [English transl. Dynamical Systems IV. Symplectic Geometry and its Applications. Springer (1997)]Google Scholar
  4. Bochner, S., Martin, W.T.: Several Complex Variables. Princeton University Press, Princeton (1948)MATHGoogle Scholar
  5. Cartan, H.: Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Hermann, Paris (1961). [English transl. Elementary Theory of Analytic Functions of One or Several Complex Variables (Dover Books on Mathematics). Dover (1995)]Google Scholar
  6. Charlier, C.L.: Die Mechanik des Himmels. Walter de Gruyter, Berlin/Leipzig (1927)MATHGoogle Scholar
  7. Dieudonné, J.: Foundation of Modern Analysis. Academic, New York/London (1960)Google Scholar
  8. Givental, A.B..: Полиномиальность электростатических потенциалов (Polynomiality of electrostatic potentials). УМН 39(5), 253–254 (1984). RussianGoogle Scholar
  9. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. D. Van Nostrand, Princeton/New Jersey/Toronto/New York/London (1966)MATHGoogle Scholar
  10. Jacobi, C.G.J.: Disquisitiones analyticae de fractionibus simplicibus. Berlin (1825)Google Scholar
  11. Jacobi, C.G.J.: Vorlesungen über Dynamik. Aufl. 2. G. Reimer, Berlin (1884). [English transl. Mathematical Aspect of Classical and Celestial Mechanics (Texts and Readings in Mathematics, V.51). 2nd rev. edn. Hindustan Book agency (2009)]Google Scholar
  12. Landau, L.D., Lifshitz, E.M.: Теоретическая физика, Т.1: Механика. “Наука” Press, Moscow (1973). [English transl. Mechanics, 3rd edn. Butterworth-Heinemann (1976)]Google Scholar
  13. Landau, L.D., Lifshitz, E.M.: Теоретическая физика, Т.8: электродинамика сплошных сред” “Наука” Press, Moscow (1982). [English transl. Electrodynamics of continuous media, 2nd edn. Butterworth-Heinemann (1984)]Google Scholar
  14. Lang, S.: Algebra. Addison-Wesley, Reading/London/Amsterdam/Don Mills/Sydney/Tokyo (1965)MATHGoogle Scholar
  15. Pakovich, F., Roytvarf, N., Yomdin, Y.: Cauchy-type integrals of algebraic functions. Isr. J. of Math. 144, 221–291 (2004)MathSciNetMATHCrossRefGoogle Scholar
  16. Schwartz, L., Huet, D.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)MATHGoogle Scholar
  17. Venkataraman, C.S.: In: Problems and solutions. Math. Magazine 44(1), 55 (1971)MathSciNetGoogle Scholar
  18. Venkov, B.A.: Элементарная теория чисел. “ОНТИ” Press, Moscow and Leningrad (1937). [English transl. Elementary Number Theory (Translated and edited by H. Alderson). Wolters-Noordhofl, Groningen (1970)]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Alexander A. Roytvarf
    • 1
  1. 1.Rishon LeZionIsrael

Personalised recommendations