Singular Integrals on Self-similar Subsets of Metric Groups

  • Vasilis Chousionis
  • Pertti Mattila
Part of the Trends in Mathematics book series (TM)


In this chapter we study singular integrals on small (i.e., measure zero and lower than full dimensional) subsets of metric groups. The main examples of the groups we have in mind are Euclidean spaces and Heisenberg groups. We shall pay particular attention to the behaviour of singular integral operators on self-similar subsets.


Heisenberg Group Hausdorff Dimension Singular Integral Operator Carnot Group Riesz Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



P.M and V.C were supported by the Academy of Finland.


  1. 1.
    Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics, Berlin (2007)MATHGoogle Scholar
  2. 2.
    Capogna, L., Danielli, D., Pauls, S.D., Tyson, J.T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Birkhäuser, Basel (2007)MATHGoogle Scholar
  3. 3.
    Chousionis, V.: Singular integrals on Sierpinski gaskets. Publ. Mat. 53(1), 245–256 (2009)MathSciNetMATHGoogle Scholar
  4. 4.
    Chousionis, V., Mateu, J., Prat, L., Tolsa, X.: Calderón-Zygmund kernels and rectifiability in the plane. Adv. Math. 231(1), 535–568 (2012)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chousionis, V., Mattila, P.: Singular integrals on Ahlfors-David subsets of the Heisenberg group. J. Geom. Anal. 21(1), 56–77 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chousionis, V., Mattila, P.: Singular integrals on self-similar sets and removability for Lipschitz harmonic functions in Heisenberg groups, to appear in J. Reme. Angew. MathGoogle Scholar
  7. 7.
    David, G.: Unrectifiable 1-sets have vanishing analytic capacity. Rev. Math. Iberoam. 14, 269–479 (1998)Google Scholar
  8. 8.
    David, G.: Des intégrales singulières bornées sur un ensemble de Cantor. C. R. Acad. Sci. Paris Sr. I Math. 332(5), 391–396 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    David, G., Semmes, S.: Analysis of and on uniformly rectifiable sets. Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993)Google Scholar
  10. 10.
    Eiderman, V. Nazarov, F., Volberg, A.: Vector-valued Riesz potentials: Cartan-type estimates and related capacities. Proc. London Math. Soc. 101(3), 727–758 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Huovinen, P.: Singular integrals and rectifiability of measures in the plane. Ann. Acad. Sci. Fenn. Math. Diss. 109, 1–63 (1997)MathSciNetGoogle Scholar
  12. 12.
    Lorent, A.: A generalised conical density theorem for unrectifiable sets. Ann. Acad. Sci. Fenn. Math. 28(2), 415–431 (2003)MathSciNetMATHGoogle Scholar
  13. 13.
    Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)MATHCrossRefGoogle Scholar
  14. 14.
    Mattila, P.: Singular integrals and rectifiability. In: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), vol. Extra, pp. 199–208. Publ. Mat. (2002)Google Scholar
  15. 15.
    Mattila, P.: Removability, singular integrals and rectifiability. Rev. Roumaine Math. Pures Appl. 54(5–6), 483–491 (2009)MathSciNetMATHGoogle Scholar
  16. 16.
    Mattila, P., Melnikov, M.S., Verdera, J.: The Cauchy integral, analytic capacity, and uniform rectifiability. Ann. of Math. 144(1–2), 127–136 (1996)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Mattila, P., Paramonov, P.V.: On geometric properties of harmonic Lip1-capacity. Pacific J. Math. 171(2), 469–490 (1995)MathSciNetMATHGoogle Scholar
  18. 18.
    Melnikov, M.S.: Analytic capacity: discrete approach and curvature of a measure. Sbornik: Mathematics 186(6), 827–846 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Melnikov, M.S., Verdera, J.: A geometric proof of the L 2 boundedness of the Cauchy integral on Lipschitz graphs. Internat. Math. Res. Notices 7, 325–331 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pajot, H.: Analytic capacity, rectifiability, Menger curvature and the Cauchy integral. Lecture Notes in Mathematics, vol. 1799. Springer, Berlin (2002)Google Scholar
  21. 21.
    Schief, A.: Self-similar sets in complete metric spaces. Proc. Amer. Math. Soc. 124, 481–490 (1996)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Strichartz, R.: Self-similarity on nilpotent Lie groups. Contemp. Math. 140, 123–157 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tolsa, X.: Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math. 190(1), 105–149 (2003)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Tolsa, X.: Analytic capacity, rectifiability, and the Cauchy integral. Contemp. International Congress of Mathematicians, vol. II, pp. 1505–1527. Eur. Math. Soc., Zürich (2006)Google Scholar
  25. 25.
    Tolsa, X.: Calderon-Zygmund capacities and Wolff potentials on Cantor sets. J. Geom. Anal. 21(1), 195–223 (2011)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Vihtilä, M.: The boundedness of Riesz s-transforms of measures in n. Proc. Amer. Math. Soc. 124, 481–490 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Illinois-Urbana ChampaignUrbanaUSA
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations