The Law of Iterated Logarithm and Equilibrium Measures Versus Hausdorff Measures for Dynamically Semi-regular Meromorphic Functions

  • Bartłomiej Skorulski
  • Mariusz Urbański
Part of the Trends in Mathematics book series (TM)


The Law of Iterated Logarithm for dynamically semi-regular meromorphic mappings and loosely tame observables is established. The equilibrium states of tame potentials are compared with an appropriate one-parameter family of generalized Hausdorff measures. The singularity/absolute continuity dichotomy is established. Both results utilize the concept of nice sets and the theory of infinite conformal iterated function systems.


Invariant Measure Meromorphic Function Hausdorff Measure Iterate Logarithm Iterate Function System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research of the Mariusz Urbański was supported in part by the NSF Grant DMS 0700831.


  1. 1.
    Badeńska, A.: Almost sure invariance principle for some hyperbolic meromorphic maps. Preprint (2008)Google Scholar
  2. 2.
    Billingsley, P.: Probability and Measure. Wiley, New York (1995)MATHGoogle Scholar
  3. 3.
    Denker, M., Urbański, M.: Relating Hausdorff measures and harmonic measures on parabolic Jordan curves. Journal für die Reine und Angewandte Mathematik 450, 181–201 (1994)MATHGoogle Scholar
  4. 4.
    Dobbs, N.: Nice sets and invariant densities in complex dynamics. Math. Proc. Cambridge Philos. Soc. 150, 157–165 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Makarov, N.: On the distortion of boundary sets under conformal mappings. Proc. London Math. Soc. 51, 369–384 (1985)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Mauldin, D., Urbański, M.: Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. 73(3), 105–154 (1996)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mauldin, D., Urbański, M.: Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Mayer, V., Urbański, M.: Geometric thermodynamical formalism and real analyticity for meromorphic functions of finite order. Ergod. Theor. Dyn. Syst. 28, 915–946 (2008)MATHGoogle Scholar
  9. 9.
    Mayer, V., Urbański, M.: Thermodynamical formalism and multifractal analysis for meromorphic functions of finite order. Memoir. Am. Math. Soc. 203, No. 954 (2010)Google Scholar
  10. 10.
    Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Memoir. Am. Math. Soc. 161, No. (2) (1975)Google Scholar
  11. 11.
    Przytycki, F., Urbański, M.: Conformal fractals: ergodic theory methods. London Mathematical Society Lecture Note Series, vol. 371. Cambridge University Press, Cambridge (2010)Google Scholar
  12. 12.
    Przytycki, F., Zdunik, A.: Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps I. Ann. Math. 130, 1–40 (1989)MathSciNetMATHGoogle Scholar
  13. 13.
    Rivera-Letelier, J.: A connecting lemma for rational maps satisfying a no-growth condition. Ergod. Theor. Dyn. Syst. 27, 595–636 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Skorulski, B., Urbański, M.: Dynamical rigidity of transcendental meromorphic functions. Nonlinearity 25(8), 2337–2348 (2012)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Skorulski, B., Urbański, M.: On Hausdorff dimension of radial julia sets of meromorphic function. Preprint (2011)Google Scholar
  16. 16.
    Urbański, M.: Hausdorff measures versus equilibrium states of conformal infinite iterated function systems. Periodica Math. Hung. 37, 153–205 (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Urbański, M., Szostakiewicz, M., Zdunik, A.: Fine inducing and equilibrium measures for rational functions of the Riemann sphere. Preprint (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Católica del NorteAntofagastaChile
  2. 2.Department of MathemsaticsUniversity of North TexasDentonUSA

Personalised recommendations