Advertisement

Space-Time Adaptive Multiresolution Techniques for Compressible Euler Equations

  • Margarete O. Domingues
  • Sônia M. Gomes
  • Olivier Roussel
  • Kai Schneider

Abstract

This paper considers space-time adaptive techniques for finite volume schemes with explicit time discretization. The purpose is to reduce memory and to speed-up computations by a multiresolution representation of the numerical solution on adaptive grids which are introduced by suitable thresholding of its wavelet coefficients. Further speed-up is obtained by the combination of the multiresolution scheme with an adaptive strategy for time integration, which is classical for ODE simulations. It considers variable time steps, controlled by a given precision, using embedded Runge–Kutta schemes. As an alternative to the celebrated CFL condition, the aim in the application of such an time-adaptive scheme for PDE simulations is to obtain accurate and safe integrations. The efficiency of this adaptive space-time method is analyzed in applications to typical Riemann–Lax test problems for the compressible Euler equations in one and two space dimensions. The results show that the accuracy properties of the reference finite volume scheme on the finest regular grid, where the time step is determined by the CFL condition, is preserved. Nevertheless, both CPU time and memory requirements are considerably reduced, thanks to the efficient self-adaptive grid refinement and controlled time-stepping.

Keywords

Wavelets Multiresolution Partial differential equations Finite volume Runge–Kutta Adaptivity Time step control 

Notes

Acknowledgements

M.O. Domingues and S. Gomes acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP grant number: 2012/07281-2, 07/52015-0), and from CNPq (grant number 306828/2010-3, 307511/2010-3, 483226/2011-4)—the Brazilian Research Council, Brazil. They are also grateful for the financial support for visiting positions at École Centrale de Marseille (M.O. Domingues and S.M. Gomes) and Université de Provence (S.M. Gomes). K. Schneider thanks Prof. Carlos de Moura for the invitation to the conference “CFL-Condition: 80 years gone by”, held in Rio de Janeiro in May, 2010. He also acknowledges financial support from the PEPS program of INSMI–CNRS. The authors are grateful to Dominique Fougère, Varlei E. Menconni, and Michel Pognant for their helpful computational assistance.

References

  1. 1.
    Abgrall, R.: Multiresolution analysis on unstructured meshes: applications to CFD. In: Chetverushkin, B.E.A. (ed.) Experimentation, Modelling and Computation in Flow, Turbulence and Combustion. Wiley, New York (1997) Google Scholar
  2. 2.
    Bendahmane, M., Bürger, R., Ruiz, R., Schneider, K.: Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems. Appl. Numer. Math. 59, 1668–1692 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berger, M.J., Collela, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 67–84 (1989) CrossRefGoogle Scholar
  4. 4.
    Bihari, B.L.: Multiresolution schemes for conservation laws with viscosity. J. Comput. Phys. 123, 207–225 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bürger, R., Ruiz, R., Schneider, K.: Adaptive multiresolution methods for the simulation of waves in excitable media. J. Sci. Comput. 43, 262–290 (2010) CrossRefGoogle Scholar
  6. 6.
    Chiavassa, G., Donat, R.: Point value multi-scale algorithms for 2D compressible flow. SIAM J. Sci. Comput. 23(3), 805–823 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72, 183–225 (2003) zbMATHGoogle Scholar
  8. 8.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Deiterding, R., Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution or adaptive mesh refinement? A case study for 2D Euler equations. ESAIM Proc. 29, 28–42 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: An adaptive multiresolution scheme with local time stepping for evolutionary PDEs. J. Comput. Phys. 227(8), 3758–3780 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations. Appl. Numer. Math. 59, 2303–2321 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Domingues, M.O., Roussel, O., Schneider, K.: An adaptive multiresolution method for parabolic PDEs with time-step control. Int. J. Numer. Methods Eng. 78, 652–670 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ferm, L., Löstedt, P.: Space-time adaptive solutions of first order PDEs. J. Sci. Comput. 26(1), 83–110 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kaibara, M., Gomes, S.M.: A fully adaptive multiresolution scheme for shock computations. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications. Kluwer Academic/Plenum Publishers, New York (2001) Google Scholar
  17. 17.
    Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Leveque, R.J.: Finite Volume Methods for Hyperbolic Systems. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  19. 19.
    Liou, M.S.: A sequel to AUSM: AUSM+. J. Comput. Phys. 129, 364–382 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Lectures Notes in Computational Science and Engineering, vol. 27. Springer, Heidelberg (2003) zbMATHCrossRefGoogle Scholar
  21. 21.
    Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30(3), 493–531 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Roussel, O., Schneider, K.: An adaptive multiresolution method for combustion problems: application to flame ball–vortex interaction. Comput. Fluids 34(7), 817–831 (2005) zbMATHCrossRefGoogle Scholar
  23. 23.
    Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188, 493–523 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Schneider, K., Vasilyev, O.: Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473–503 (2010) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Schulz-Rinne, C.W., Collis, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394–1414 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Text in Applied Mathematics, vol. 12. Springer, Berlin (1991) Google Scholar
  27. 27.
    Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001) CrossRefGoogle Scholar
  28. 28.
    Zhang, T., Zheng, Y.: Conjecture on the structure of solutions the Riemann problem for two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21, 593–630 (1990) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Margarete O. Domingues
    • 1
  • Sônia M. Gomes
    • 2
  • Olivier Roussel
    • 3
  • Kai Schneider
    • 4
  1. 1.Laboratório Associado de Computação e Matemática Aplicada (LAC)Instituto Nacional de Pesquisas Espaciais (INPE)São José dos CamposBrazil
  2. 2.IMECCUniversidade Estadual de CampinasCampinasBrazil
  3. 3.EurobiosCachanFrance
  4. 4.M2P2-CNRSAix-Marseille UniversitéMarseille cedex 20France

Personalised recommendations