Skip to main content

On the Quadratic Finite Element Approximation of 1D Waves: Propagation, Observation, Control, and Numerical Implementation

  • Chapter

Abstract

In arXiv:1112.4297, we studied the propagation, observation, and control properties of the 1D wave equation on a bounded interval semi-discretized in space using the quadratic classical finite element approximation. It was shown that the discrete wave dynamics consisting of the interaction of nodal and midpoint components leads to the existence of two different eigenvalue branches in the spectrum: an acoustic one, of physical nature, and an optic one, of spurious nature. The fact that both dispersion relations have critical points where the corresponding group velocities vanish produces numerical wave packets whose energy is concentrated in the interior of the domain, without propagating, and for which the observability constant blows up as the mesh size goes to zero. This extends to the quadratic finite element setting the fact that the classical property of continuous waves being observable from the boundary fails for the most classical approximations on uniform meshes (finite differences, linear finite elements, etc.). As a consequence, the numerical controls of minimal norm may blow up as the mesh size parameter tends to zero. To cure these high-frequency pathologies, in arXiv:1112.4297 we designed a filtering mechanism consisting in taking piecewise linear and continuous initial data (so that the curvature component vanishes at the initial time) with nodal components given by a bi-grid algorithm. The aim of this article is to implement this filtering technique and to show numerically its efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Castro, C., Cea, M., Micu, S., Münch, A., Negreanu, M., Zuazua, E.: Wavecontrol: a program for the control and stabilization of waves. Manual. http://www.bcamath.org/documentos_public/archivos/personal/conferencias/manual200805.pdf

  2. Ervedoza, S., Zheng, C., Zuazua, E.: On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254(12), 3037–3078 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ervedoza, S., Zuazua, E.: The wave equation: control and numerics. In: Cannarsa, P.M., Coron, J.M. (eds.) Control and stabilization of PDEs. Lecture Notes in Mathematics, CIME Subseries, vol. 2048, pp. 245–339. Springer, Berlin (2012)

    Google Scholar 

  4. Glowinski, R., Li, C.H., Lions, J.L.: A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7(1), 1–76 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ignat, L., Zuazua, E.: Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47(2), 1366–1390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ignat, L., Zuazua, E.: Convergence of a two-grid algorithm for the control of the wave equation. J. Eur. Math. Soc. 11(2), 351–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Infante, J.-A., Zuazua, E.: Boundary observability for the space semidiscretization of the 1D wave equation. Modél. Math. Anal. Numér. 33, 407–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lions, J.L.: Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, vol. 1. Masson, Paris (1988)

    Google Scholar 

  9. Loreti, P., Mehrenberger, M.: An Ingham type proof for a two-grid observability theorem. ESAIM Control Optim. Calc. Var. 14(3), 604–631 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marica, A., Zuazua, E.: Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the 1D wave equation. C. R. Acad. Sci. Paris Ser. I 348, 1087–1092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marica, A., Zuazua, E.: On the quadratic finite element approximation of 1D waves: propagation, observation and control. SIAM J. Numer. Anal. (accepted). arXiv:1112.4297

  12. Marica, A., Zuazua, E.: High frequency wave packets for the Schrödinger equation and its numerical approximations. C. R. Acad. Sci. Paris Ser. I 349, 105–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Micu, S.: Uniform boundary controllability of a semi-discrete 1D wave equation. Numer. Math. 91, 723–768 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Negreanu, M., Zuazua, E.: Convergence of a multigrid method for the controllability of a 1D wave equation. C. R. Math. Acad. Sci. Paris 338, 413–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zuazua, E.: Propagation, observation, control and numerical approximations of waves. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors were partially supported by ERC Advanced Grant FP7-246775 NUMERIWAVES, Grants MTM2008-03541 and MTM2011-29306 of MICINN Spain, Project PI2010-04 of the Basque Government, and ESF Research Networking Programme OPTPDE. Additionally, the first author was supported by Grant PN-II-ID-PCE-2011-3-0075 of CNCS-UEFISCDI Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Zuazua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marica, A., Zuazua, E. (2013). On the Quadratic Finite Element Approximation of 1D Waves: Propagation, Observation, Control, and Numerical Implementation. In: de Moura, C., Kubrusly, C. (eds) The Courant–Friedrichs–Lewy (CFL) Condition. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8394-8_6

Download citation

Publish with us

Policies and ethics