Skip to main content
  • 2661 Accesses

Abstract

Gradient descent methods for large positive definite linear and nonlinear algebraic systems arise when integrating a PDE to steady state and when regularizing inverse problems. However, these methods may converge very slowly when utilizing a constant step size, or when employing an exact line search at each step, with the iteration count growing proportionally to the condition number. Faster gradient descent methods must occasionally resort to significantly larger step sizes, which in turn yields a strongly nonmonotone decrease pattern in the residual vector norm.

In fact, such faster gradient descent methods generate chaotic dynamical systems for the normalized residual vectors. Very little is required to generate chaos here: simply damping steepest descent by a constant factor close to 1 will do. The fastest practical methods of this family in general appear to be the chaotic, two-step ones. Despite their erratic behavior, these methods may also be used as smoothers, or regularization operators. Our results also highlight the need for better theory for these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us assume throughout for simplicity that λ 1>λ 2 and λ m−1>λ m .

  2. 2.

    The vector 2-norm is utilized here and elsewhere, unless otherwise specified.

References

  1. Akaike, H.: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Stat. Math. Tokyo 11, 1–16 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ascher, U.: Numerical Methods for Evolutionary Differential Equations. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  3. Ascher, U., Mattheij, R., Russell, R.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  4. Ascher, U., Huang, H., van den Doel, K.: Artificial time integration. BIT Numer. Math. 47, 3–25 (2007)

    Article  MATH  Google Scholar 

  5. Ascher, U., van den Doel, K., Huang, H., Svaiter, B.: Gradient descent and fast artificial time integration. Modél. Math. Anal. Numér. 43, 689–708 (2009)

    Article  MATH  Google Scholar 

  6. Barzilai, J., Borwein, J.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  8. Fletcher, R.: On the Barzilai–Borwein method. In: Qi, L., Teo, K., Yang, X. (eds.) Optimization and Control with Applications. Kluwer Series in Applied Optimization, vol. 96, pp. 235–256 (2005)

    Chapter  Google Scholar 

  9. Friedlander, A., Martinez, J., Molina, B., Raydan, M.: Gradient method with retard and generalizations. SIAM J. Numer. Anal. 36, 275–289 (1999)

    Article  MathSciNet  Google Scholar 

  10. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  11. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)

    MATH  Google Scholar 

  12. Huang, H., Ascher, U.: Faster gradient descent and the efficient recovery of images. Math. Program. (2013, to appear)

    Google Scholar 

  13. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  14. Pronzato, L., Wynn, H., Zhigljavsky, A.: Dynamical Search: Applications of Dynamical Systems in Search and Optimization. Chapman & Hall/CRC, Boca Raton (2000)

    MATH  Google Scholar 

  15. Raydan, M., Svaiter, B.: Relaxed steepest descent and Cauchy–Barzilai–Borwein method. Comput. Optim. Appl. 21, 155–167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shimada, I., Nagashima, T.: A numerical approach to ergodic problems of dissipative dynamical systems. Prog. Theor. Phys. 61(6), 1605–1616 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. van den Doel, K., Ascher, U.: The chaotic nature of faster gradient descent methods. J. Sci. Comput. 48 (2011). doi:10.1007/s10915-011-9521-3

  18. Vogel, C.: Computational Methods for Inverse Problem. SIAM, Philadelphia (2002)

    Book  Google Scholar 

Download references

Acknowledgements

The first author thanks IMPA, Rio de Janeiro, for support and hospitality during several months in 2011 when this work was completed.

U. Ascher supported in part by NSERC Discovery Grant 84306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Ascher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ascher, U., van den Doel, K. (2013). Fast Chaotic Artificial Time Integration. In: de Moura, C., Kubrusly, C. (eds) The Courant–Friedrichs–Lewy (CFL) Condition. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8394-8_10

Download citation

Publish with us

Policies and ethics