Advertisement

Magic Graphs pp 111-134 | Cite as

Totally Magic Labelings

  • Alison M. Marr
  • W. D. Wallis
Chapter

Abstract

In this chapter we investigate the question: for a graph G does there exist a total labeling λ that is both edge-magic and vertex-magic? As we said, such a λ is called a totally magic labeling and G is a totally magic graph. The constants h and k are the magic constant and magic sum, respectively. We do not require that h = k.

Keywords

Edge Incident Common Neighbor Edge Label Vertex Label Vertex Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. M. Aldous and R. J. Wilson, Graphs and Applications: An Introductory Approach. Springer-Verlag, New York (2000).MATHGoogle Scholar
  2. 2.
    W. S. Andrews, Magic Squares and Cubes. Dover (1960).Google Scholar
  3. 3.
    A. Armstrong and D. McQuillan, Vertex-magic total labelings of even complete graphs. Discrete Math. 311 (2011), 676–683.Google Scholar
  4. 4.
    S. Arumugam, G. S. Bloom, M. Miller and J. Ryan, Some open problems on graph labelings, AKCE Internat. J. Graphs Combin. 6 (2009), 229–236.Google Scholar
  5. 5.
    S. Avadayappan, R. Vasuki and P. Jeyanthi, Magic strength of a graph. Indian J. Pure Appl. Math. 31 (2000), 873–883.Google Scholar
  6. 6.
    M. Bača, On magic labelings of grid graphs. Ars Combin. 33 (1992), 295–299.Google Scholar
  7. 7.
    M. Bača, Labelings of two classes of plane graphs. Acta Math. Appl. Sinica (English Ser.) 9 (1993), 82–87.Google Scholar
  8. 8.
    M. Bača and M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions. Brown Walker, Boca Raton (2007).Google Scholar
  9. 9.
    M. Balakrishnan and G. Marimuthu, E–super vertex magic labelings of graphs. Discrete Appl. Math. 160 (2012), 1766–1774.Google Scholar
  10. 10.
    D. W. Bange, A. E. Barkauskas, and P. J. Slater, Conservative graphs. J. Graph Theory 4 (1980), 81–91.Google Scholar
  11. 11.
    C. A. Barone. Magic Labelings of Directed Graphs, Masters Thesis, University of Victoria, 2008, 55 pages.Google Scholar
  12. 12.
    S. S. Block and S. A. Tavares, Before Sudoku: The World of Magic Squares. Oxford University Press (2009).Google Scholar
  13. 13.
    G. S. Bloom, Private communication.Google Scholar
  14. 14.
    G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs. Proc. IEEE 65 (1977) 562–570.Google Scholar
  15. 15.
    G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications. In Theory and Applications of Graphs, Lecture Notes in Math. 642. Springer-Verlag (1978), 53–65.Google Scholar
  16. 16.
    G. S. Bloom and D. F. Hsu, On graceful directed graphs. SIAM J. Alg. Disc. Math. 6 (1985), 519–536.Google Scholar
  17. 17.
    G. S. Bloom, A. Marr, and W. D. Wallis, Magic digraphs. J. Combin. Math. Combin. Comput. 65 (2008), 205–212.Google Scholar
  18. 18.
    T. Bohman, A construction for sets of integers with distinct subset sums. Electronic J. Combinatorics 5 (1998), #R3.Google Scholar
  19. 19.
    R. A. Brualdi, Introductory Combinatorics. (3rd ed.) Prentice-Hall (1999).Google Scholar
  20. 20.
    B. Calhoun, K. Ferland, L. Lister, and J. Polhill, Totally magic labelings of graphs. Austral. J. Combin. 32 (2005), 47–59.Google Scholar
  21. 21.
    R. Cattell, Vertex-magic total labelings of complete multipartite graphs. J. Combin. Math. Combin. Comput. 55 (2005), 187–197.Google Scholar
  22. 22.
    D. Craft and E. H. Tesar, On a question by Erdös about edge-magic graphs. Discrete Math. 207 (1999), 271–276.Google Scholar
  23. 23.
    J. Dénes and A. D. Keedwell, Latin Squares and their Applications. Academic Press (1974).Google Scholar
  24. 24.
    T. J. Dickson and D. G. Rogers, Problems in graph theory. V. Magic valuations. Southeast Asian Bull. Math. 3 (1979), 40–43.Google Scholar
  25. 25.
    H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs. SUT J. Math. 34 (1998), 105–109.Google Scholar
  26. 26.
    P. Erdös, Problems and results from additive number theory. Colloq. Théorie des Nombres, Bruxelles (1955), 127–137.Google Scholar
  27. 27.
    P. Erdös and P. Turán, On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc. 16 (1941), 212–215; Addendum, 19 (1944), 242.Google Scholar
  28. 28.
    G. Exoo, A. C. H. Ling, J. P. McSorley, N. C. K. Phillips and W. D. Wallis, Totally magic graphs. Discrete Math. 254 (2), 103–113.Google Scholar
  29. 29.
    R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings. Discrete Math. 231 (2001), 153–168.Google Scholar
  30. 30.
    Y. Fukuchi, Edge-magic labelings of wheel graphs. Tokyo J. Math. 24 (2001), 153–167.Google Scholar
  31. 31.
    J. A. Gallian, A dynamic survey of graph labeling. Electronic J. Combinatorics 18 (2011), Dynamic Survey #DS6.Google Scholar
  32. 32.
    F. Göbel and C. Hoede, Magic labelings of graphs. Ars Combin. 51 (1999), 3–19.Google Scholar
  33. 33.
    R. D. Godbold and P. J. Slater, All cycles are edge-magic. Bull. Inst. Combin. Appl. 22 (1998), 93–97.Google Scholar
  34. 34.
    J. Gómez, Solution of the conjecture: If \(n \equiv 0\) (mod 4), n > 4, then K n has a super vertex-magic total labeling. Discrete Math. 307 (2007), 2525–2534.Google Scholar
  35. 35.
    J. Gómez, Two new methods to obtain super vertex-magic total labelings of graphs. Discrete Math. 308 (2008), 3361–3372Google Scholar
  36. 36.
    I. D. Gray, Vertex-magic total labelings of regular graphs, SIAM J. Discrete Math. 21 (2007), 170–177.Google Scholar
  37. 37.
    I. D. Gray, J. A. MacDougall, Sparse Semi-Magic Squares and Vertex Magic Labelings. Ars Comb. 80 (2006), 225–242.MathSciNetMATHGoogle Scholar
  38. 38.
    I. D. Gray, J. A. MacDougall, J. P. McSorley and W D. Wallis, Vertex-magic labeling of trees and forests. Discrete Math. 261 (2), 285–298.Google Scholar
  39. 39.
    I. D. Gray, J. A. MacDougall, R. J. Simpson and W. D. Wallis, Vertex-magic total labelings of complete bipartite graphs. Ars Combin. 69 (2), 117–128.Google Scholar
  40. 40.
    I. D. Gray, J. A. MacDougall and W. D. Wallis, On vertex-magic labeling of complete graphs. Bull. Inst. Combin. Appl. 38 (2), 42–44.Google Scholar
  41. 41.
    R. K. Guy, Unsolved Problems in Number Theory. Second Edition. Springer, New York (1994).MATHGoogle Scholar
  42. 42.
    T. R. Hagedorn, Magic rectangles revisited. Discrete Math. 207 (1999), 65–72.Google Scholar
  43. 43.
    T. Harmuth, Ueber magische Quadrate und ähnliche Zahlenfiguren. Arch. Math. Phys. 66 (1881), 286–313.Google Scholar
  44. 44.
    T. Harmuth, Ueber magische Rechtecke mit ungeraden Seitenzahlen. Arch. Math. Phys. 66 (1881), 413–447.Google Scholar
  45. 45.
    N. Hartsfield and G. Ringel, Pearls in Graph Theory. Academic Press (1990).Google Scholar
  46. 46.
    S. M. Hegde and S. Shetty, On magic graphs. Ars Combin. 27 (2), 277–284.Google Scholar
  47. 47.
    H. Ivančo and Lučkaničová, On edge-magic disconnected graphs. SUT J. Math. 38 (2), 175–184.Google Scholar
  48. 48.
    P. Jeyanthi and V. Swaminathan, Super vertex-magic labeling. Indian J. Pure Appl. Math. 34 (2), 935–939.Google Scholar
  49. 49.
    P. Jeyanthi and V. Swaminathan, On super vertex-magic labling. J. Discrete Math. Sci. Cryptography 8 (2005), 217–224.Google Scholar
  50. 50.
    S.-R. Kim and J. Y. Park, On super edge-magic graphs. Ars Combin. 81 (2006), 113–127.MathSciNetMATHGoogle Scholar
  51. 51.
    A. Kotzig, On a class of graphs without magic valuations.Reports of the CRM CRM–136, 1971.Google Scholar
  52. 52.
    A. Kotzig, On magic valuations of trichromatic graphs.Reports of the CRM CRM–148, December 1971.Google Scholar
  53. 53.
    A. Kotzig, On well spread sets of integers.Reports of the CRM CRM–161 (1972).Google Scholar
  54. 54.
    A. Kotzig and A. Rosa, Magic valuations of finite graphs. Canad. Math. Bull. 13 (1970), 451–461.Google Scholar
  55. 55.
    A. Kotzig and A. Rosa, Magic valuations of complete graphs. Publ. CRM175 (1972).Google Scholar
  56. 56.
    S.-M. Lee, E. Seah and S.-K. Tan, On edge-magic graphs. Congressus Num. 86 (1992), 179–191.Google Scholar
  57. 57.
    K. W. Lih, On magic and consecutive labelings of plane graphs. Utilitas Math. 24 (1983), 165–197.Google Scholar
  58. 58.
    Y. Lin and M. Miller, Vertex-magic total labelings of complete graphs. Bull. Inst. Combin. Appl. 33 (2001),68–76.Google Scholar
  59. 59.
    S. C. Lopez, F. A. Muntaner-Batle and M. Rius-Font, Bimagic and other generalizations of super edge-magic labelings. Bull. Austral. Math. Soc. 84 (2011), 137–152.MathSciNetMATHGoogle Scholar
  60. 60.
    J. MacDougall, Vertex-magic labeling of regular graph.Lecture, DIMACS Connect Institute (July 18, 2).Google Scholar
  61. 61.
    J. MacDougall, M. Miller, Slamin and W. D. Wallis, Vertex-magic total labelings. Utilitas Math. 61 (2), 3–21.Google Scholar
  62. 62.
    J. A. MacDougall, M. Miller and K. Sugeng, Super vertex-magic lotal labelings of graphs. Proc. 15th AWOCA (2004), 222–229.Google Scholar
  63. 63.
    J. MacDougall, M. Miller and W. D. Wallis, Vertex-magic total labelings of wheels and related graphs. Utilitas Math. 62 (2), 175–183.Google Scholar
  64. 64.
    J. MacDougall and W. D. Wallis, Strong edge-magic labeling of a cycle with a chord. Austral. J. Combin. 28 (2), 245–255.Google Scholar
  65. 65.
    A. Marr, Labelings of directed graphs, Ph.D. Thesis, Southern Illinois University at Carbondale, 2007, 63 pages.Google Scholar
  66. 66.
    A. Marr, Magic vertex labelings of digraphs. Int. J. Math. Comput. Sci. 4 (2009), no. 2, 91–96.MathSciNetMATHGoogle Scholar
  67. 67.
    A. Marr and S. Stern, Magic labelings of directed graphs, preprint.Google Scholar
  68. 68.
    B. D. McKay, nauty User’s Guide (version 1.5). Technical Report TR-CS-87-03. Department of Computer Science, Australian National University (1990).Google Scholar
  69. 69.
    D. McQuillan, Edge-magic and vertex-magic total labelings of certain cycles. Ars Combin. 91(2009), 257–266.Google Scholar
  70. 70.
    D. McQuillan and J. M. McQuillan, Magic labelings of triangles. Discrete Math. 309(2009), 2755–2762.Google Scholar
  71. 71.
    D. McQuillan and K. Smith, Vertex-magic labeling of odd complete graphs. Discrete Math. 305(2005), 240–249.Google Scholar
  72. 72.
    J. P. McSorley, Totally magic injections of graphs. J. Combin. Math. Combin. Comput. 56 (2006), 65–81.Google Scholar
  73. 73.
    J. P. McSorley and J. A. Trono, On k-minimum and m-minimum edge-magic injections of graphs. Discrete Math. 310 (2001), 56–69.Google Scholar
  74. 74.
    J. P. McSorley and W. D. Wallis, On the spectra of totally magic labelings. Bull. Inst. Combin. Appl. 37 (2), 58–62.Google Scholar
  75. 75.
    J.  Milhalisin, Vertex magic unions of stars. Congressus Num. 177 (2005), 101–107.Google Scholar
  76. 76.
    M. Miller, J. A. MacDougall, Slamin and W. D. Wallis, Problems in total graph labelings, Proc. Australasian Workshop on Combinatorial Algorithms, Perth (1999).Google Scholar
  77. 77.
    J. Moran, The Wonders of Magic Squares. Vintage Books, Random House (1982).Google Scholar
  78. 78.
    F. A. Muntaner-Batle, Special super edge magic labelings of bipartite graphs. J. Combin. Math. Combin. Comput. 39 (2001), 107–120.Google Scholar
  79. 79.
    J. Y. Park, J. H. Choi and J. H. Bae, On super edge-magic labeling of some graphs. Bull. Korean Math. Soc. 45 (2008), 11–21.Google Scholar
  80. 80.
    N. C. K. Phillips, R. S. Rees and W. D. Wallis, Edge-magic total labelings of wheels. Bull. Inst. Combin. Appl. 31 (2001), 21–30.Google Scholar
  81. 81.
    N. C. K. Phillips and W. D. Wallis, Well-spread sequences. J. Combin. Math. Combin. Comput. 31 (1999), 91–96.Google Scholar
  82. 82.
    G. Ringel and A. S. Llado, Another tree conjecture. Bull. Inst. Combin. Appl. 18 (1996), 83–85.Google Scholar
  83. 83.
    J. Sedláček, Problem 27. Theory of graphs and its applications. (Smolenice, 1963), 163–164 Publ. House Czechoslovak Acad. Sci., Prague (1964).Google Scholar
  84. 84.
    S. Sidon, Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen. Math. Ann. 106 (1932), 536–539.Google Scholar
  85. 85.
    Slamin, M. Bača, Y. Lin, M. Miller and R. Simanjuntak, Edge-magic total labelings of wheels, fans and friendship graphs. Bull. Inst. Combin. Appl. 35 (2), 89–98.Google Scholar
  86. 86.
    B. M. Stewart, Magic graphs. Canad. J. Math. 18 (1966), 1031–1059.Google Scholar
  87. 87.
    A. P. Street and W. D. Wallis, Combinatorial Theory: An Introduction. Charles Babbage Research Centre (1977).Google Scholar
  88. 88.
    K. A. Sugeng and M. Miller, On consecutive edge magic total labeling of graph. J. Discrete Algorithms 6 (2008), 59–65.Google Scholar
  89. 89.
    University of Sydney, Mathematics Enrichment Groups, Exercises for March 26, 1999.Google Scholar
  90. 90.
    L. Valdés, Edge-magic K p. Paper delivered at Thirty-Second South-Eastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, 2001).Google Scholar
  91. 91.
    V. G. Vizing, On an estimate of the chromatic class of a p-graph [Russian]. Discret. Anal. 3 (1964), 25–30.Google Scholar
  92. 92.
    W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York (1988).MATHGoogle Scholar
  93. 93.
    W. D. Wallis A Beginner’s Guide to Graph Theory. Birkhauser, Boston (2000).Google Scholar
  94. 94.
    W. D. Wallis, Two results of Kotzig on magic labelings. Bull. Inst. Combin. Appl. 36 (2), 23–28.Google Scholar
  95. 95.
    W. D. Wallis, Vertex magic labelings of multiple graphs. Congressus Num. 152 (2001), 81–83.Google Scholar
  96. 96.
    W. D. Wallis, E. T. Baskoro, M. Miller and Slamin, Edge-magic total labelings. Austral. J. Combin. 22 (2000), 177–190.Google Scholar
  97. 97.
    W. D. Wallis and R. A. Yates, On Totally Magic Injections. Austral. J. Combin. 32 (2005), 339–348.Google Scholar
  98. 98.
    D. B. West, An Introduction to Graph Theory. Prentice-Hall (1996).Google Scholar
  99. 99.
    K. Wijaya and E. T. Baskoro, Edge-magic total labeling on disconnected graphs, Proc. Eleventh Australasian Workshop on Combinatorial Algorithms, University of Newcastle (2000), 139–144.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alison M. Marr
    • 1
  • W. D. Wallis
    • 2
  1. 1.Department of Mathematics and Computer ScienceSouthwestern UniversityGeorgetownUSA
  2. 2.Department of MathematicsSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations