Skip to main content

Geometric Algebra

  • Chapter
  • First Online:
  • 3155 Accesses

Abstract

The real number system \(\mathbb{R}\) has a long and august history spanning a host of civilizations over a period of many centuries [17]. It may be considered the rock upon which many other mathematical systems are constructed and, at the same time, serves as a model of desirable properties that any extension of the real numbers should have.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An open domain is an open connected subset of \({\mathbb{R}}^{n}\). The topological propererties of \({\mathbb{R}}^{n}\) are rigorously defined and discussed in Michael Spivak’s book, “Calculus on Manifolds” [92].

References

  1. Ablamowicz, R., Sobczyk, G.: Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston (2004)

    Google Scholar 

  2. Ahlfors, L.V.: Complex Analysis, 3rd edn. McGraw-Hill, New York (1979)

    Google Scholar 

  3. Baylis, W.E., Huschilt, J., Jiansu, W.: Why i? Am. J. Phys. 60(9), 788 (1992)

    Google Scholar 

  4. Baylis, W.E.: Electrodynamics: A Modern Geometric Approach (Progress in Mathematical Physics). Birkhäuser, Boston (1998)

    Google Scholar 

  5. Baylis, W.E., Sobczyk, G.: Relativity in clifford’s geometric algebras of space and spacetime. Int. J. Theor. Phys. 43(10), 1386–1399 (2004)

    Google Scholar 

  6. Bayro Corrochano, E., Sobczyk, G. (eds.): Geometric Algebra with Applications in Science and Engineering. Birkhäuser, Boston (2001)

    Google Scholar 

  7. Belinfante, J.G.F., Kolman, B.: A Survey of Lie Groups and Lie Algebras with Applications and Computational Methods. Society for Industrial and Applied Mathematics, Pennsylvania (1972)

    Google Scholar 

  8. Birkhoff, G.: Lie groups isomorphic with no linear group. Bull. Am. Math. Soc., 42, 882–888 (1936)

    Google Scholar 

  9. Born, M.: Einstein’s Theory of Relativity, rev. edn. Dover, New York (1962)

    Google Scholar 

  10. Brackx, F., Delanghe R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman Advanced Publishing Program, Boston (1982)

    Google Scholar 

  11. Brackx, F., De Schepper, H., Sommen, F.: The hermitian clifford analysis toolbox. Adv. Appl. Clifford Algebras 18, 451–487 (2008)

    Google Scholar 

  12. Clifford, W.K.: Applications of grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)

    Google Scholar 

  13. Clifford, W.K.: On the classification of geometric algebras, In: R. Tucker (ed.) Mathematical Papers by William Kingdon Clifford, pp. 397–401. Macmillan, London (1882) (Reprinted by Chelsea, New York, 1968)

    Google Scholar 

  14. Crowe, M.J.: A History of Vector Analysis. Chapter 6. Dover, New York (1985)

    Google Scholar 

  15. Cullen, C.G.: Matrices and Linear Transformations, 2nd edn. Dover, New York (1972)

    Google Scholar 

  16. Curtis, C.W.: Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, AMS and the London Mathematical Society (1999). http://www.ams.org/bookstore-getitem/item=HMATH-15-S

  17. Dantzig, T.: NUMBER: The Language of Science, 4th edn. Free Press, New York (1967)

    Google Scholar 

  18. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    Google Scholar 

  19. Doran, C., Hestenes, D., Sommen, F., Van Acker, N.: Lie groups as spin groups. J. Math. Phys., 34(8), 3642–3669 (1993)

    Google Scholar 

  20. Dorst, L., Doran, C., Lasenby, J. (eds.): Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston (2002)

    Google Scholar 

  21. Einstein, A., Lorentz, H.A., Minkowski, H., Weyl, H.: On the Electrodynamics of Moving Bodies. In: The Principle of Relativity, pp. 37–65. Dover, New York (1923). Translated from “Zur Elektrodynamik bewegter Körper”, Annalen der Physik, 17 (1905)

    Google Scholar 

  22. Fishback, W.T.: Projective & Euclidean Geometry, 2nd edn. Wiley, New York (1969)

    Google Scholar 

  23. Fjelstad, P.: Extending relativity via the perplex numbers. Am. J. Phys. 54(5), 416 (1986)

    Google Scholar 

  24. Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover, New York (1989)

    Google Scholar 

  25. French, A.P.: Special Relativity. Norton, New York (1968)

    Google Scholar 

  26. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, New York (1991)

    Google Scholar 

  27. Friedberg, S.H., Insel, A.J., Spence, L.E.: Linear Algebra. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

  28. Gallian, J.A.: Contemporary Abstract Algebra, 6th edn. Houghton Mifflin Company, Boston (2006)

    Google Scholar 

  29. Gantmacher, F.R.: Theory of Matrices, translated by Hirsch, K.A. Chelsea Publishing, New York (1959)

    Google Scholar 

  30. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Properties and Operations, vol. 1. Academic, New York (1964)

    Google Scholar 

  31. Havel, T.F.: Geometric Algebra: Parallel Processing for the Mind (Nuclear Engineering) (2002). http://www.garretstar.com/secciones/clases/MT318/lect1.pdf, http://web.mit.edu/tfhavel/www/

  32. Heath, T.L: Euclid’s Elements, vol. 2, p. 298, 2nd edn. Dover, New York (1956)

    Google Scholar 

  33. Hestenes, D.: Space Time Algebra. Gordon and Breach, New York (1966)

    Google Scholar 

  34. Hestenes, D.: Proper particle mechanics. J. Math. Phys. 15, 1768–1777 (1974)

    Google Scholar 

  35. Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math. vol. 23, pp. 65–93. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  36. Hestenes, D.: New Foundations for Classical Mechanics, 2nd edn. Kluwer, Dordrecht (1999)

    Google Scholar 

  37. Hestenes, D.: Point groups and space groups in geometric algebra, In: Doerst, L., Doran, C., Lasen, J. (eds.) Applications of Geometric Algebra with Applications in Computer Science and Engineering, pp. 3–34. Birkhauser, Boston (2002)

    Google Scholar 

  38. Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(6), pp. 691–714 (2003)

    Google Scholar 

  39. Hestenes, D.: Gauge Theory Gravity with Geometric Calculus, Foundations of Physics, 35(6):903–970 (2005)

    Google Scholar 

  40. Hestenes, D., Holt, J.: The crystallographic space groups in geometric algebra. J. Math. Phys. 48, 023514 (2007)

    Google Scholar 

  41. Hestenes, D.: Grassmann’s Legacy. In: Grassmann Bicentennial Conference (1809-1877) September 16–19, (2009) Potsdam Szczecin (DE PL). http://geocalc.clas.asu.edu/pdf/GrassmannLegacy2.pdf

  42. Hestenes, D., Reany, P., Sobczyk, G.: Unipodal algebra and roots of polynomials. Adv. Appl. Clifford Algebras 1(1), 31–51 (1991)

    Google Scholar 

  43. Hestenes D., Sobczyk. G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, 2nd edn. Kluwer, Dordrecht (1992)

    Google Scholar 

  44. Hestenes, D., Ziegler, R.: Projective geometry with Clifford algebra, Acta Applicandae Mathematicae, vol. 23, p. 25–63, Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  45. Hicks, N.J.: Notes on Differential Geometry. Van Nostrand Company, Princeton (1965)

    Google Scholar 

  46. Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1990)

    Google Scholar 

  47. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)

    Google Scholar 

  48. James, G., Liebeck, M.: Representations and Characters of Groups, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  49. Klein, F.: Elementary Mathematics From an Advanced Standpoint, vol. 1, 3rd edn. Dover, New York (1924)

    Google Scholar 

  50. Lam, T.Y.: Representations of finite groups: a hundred years. Part I Notices of the AMS 45(3), 361–372 (1998)

    Google Scholar 

  51. Lasenby, A., Doran, C., & Gull, S.: Gravity, gauge theories and geometric algebra, Phil. Trans. R. Lond. A 356: 487–582 (1998)

    Google Scholar 

  52. Lee, J.M.: Manifolds and Differential Geometry, Graduate Studies in Mathematics, vol. 107. American Mathematical Society, Providence, Rhode Island (2009)

    Google Scholar 

  53. Linz, P.: Theoretical Numerical Analysis. Wiley, New York (1979)

    Google Scholar 

  54. Lounesto, P.: Clical Algebra Calculator and user manual, Helsinki University of Technology of Mathematics, Research Report 248, (1994) http://users.tkk.fi/ppuska/mirror/Lounesto/CLICAL.htm

  55. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  56. Millman, R.S., Parker, G.D.: Elements of Differential Geometry. Prentice-Hall, Englewood Cliffs (1977)

    Google Scholar 

  57. Nash, J.: C1 isometric imbeddings. Ann. Math. 60(3), 383–396 (1954)

    Google Scholar 

  58. Nash, J.: The imbedding problem for riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)

    Google Scholar 

  59. Nahin, P.: An Imaginary Tale: The story of the Square Root of Minus One. Princeton University Press, Princeton (1998)

    Google Scholar 

  60. Nering, E.: Linear Algebra and Matrix Theory (Paperback). Wiley, New York (1976)

    Google Scholar 

  61. Niven, I.N., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers, 5th edn. Wiley, New York (1991)

    Google Scholar 

  62. Oziewicz, Z.: How do you add relative velocities? In: Pogosyan, G.S., Vicent, L.E., Wolf, K.B. (eds.) Group Theoretical Methods in Physics. Institute of Physics, Bristol (2005)

    Google Scholar 

  63. Pontryagin, L.S.: Hermitian operators in a space with indefinite metric. Izv. Akad. Nauk SSSR Ser. Mat. 8, 243–280 (1944)

    Google Scholar 

  64. Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  65. Pozo, J., Sobczyk, G.: Geometric algebra in linear algebra and geometry. Acta Appl. Math. 71, 207–244 (2002)

    Google Scholar 

  66. Shilov, G.E.: Linear Algebra. Dover, New York (1977)

    Google Scholar 

  67. Sobczyk, G.: Mappings of Surfaces in Euclidean Space using Geomtric Algebra. Ph.D dissertation, Arizona State University (1971). http://www.garretstar.com/secciones/publications/publications.html

  68. Sobczyk, G.: Spacetime vector analysis. Phys. Lett. 84A, 45–49 (1981)

    Google Scholar 

  69. Sobczyk, G.: Conjugations and hermitian operators in spacetime. Acta Phys. Pol. B12(6), 509–521 (1981)

    Google Scholar 

  70. Sobczyk, G.: A complex gibbs-heaviside vector algebra for space-time. Acta Phys. Pol. B12(5), 407–418 (1981)

    Google Scholar 

  71. Sobczyk, G.: Unipotents, idempotents, and a spinor basis for matrices. Adv. Appl. Clifford Algebras 2(1), 51–64 (1992)

    Google Scholar 

  72. Sobczyk, G.: Noncommutative extensions of number: an introduction to clifford’s geometric algebra. Aportaciones Mat. Comun. 11, 207–218 (1992)

    Google Scholar 

  73. Sobczyk, G.: Simplicial calculus with geometric algebra. In: Micali, A., et al. (eds.) Clifford Algebras and their Applications in Mathematical Physics, p. 279–292. Kluwer, the Netherlands (1992)

    Google Scholar 

  74. Sobczyk, G.: Linear transformations in unitary geometric algebra. Found. Phys. 23(10), 1375–1385 (1993)

    Google Scholar 

  75. Sobczyk, G.: Jordan form in associative algebras. In: Oziewicz, Z., et al. (eds.) Clifford Algebras and Quantum Deformations, pp. 357–364. Kluwer, the Nethelands (2003)

    Google Scholar 

  76. Sobczyk, G.: Jordan form in clifford algebra. In: Bracks, F., et al. (eds.) Clifford Algebras and their Applications in Mathematical Physics, pp. 33–41. Kluwer, the Netherlands (2003)

    Google Scholar 

  77. Sobczyk, G.: Hyperbolic number plane. College Math. J. 26(4), 268–280 (1995)

    Google Scholar 

  78. Sobczyk, G.: The generalized spectral decomposition of a linear operator. College Math. J. 28(1), 27–38 (1997)

    Google Scholar 

  79. Sobczyk, G.: Spectral Integral Domains in the Classroom. Aportaciones Matematicas. Serie Comunicaciones, vol. 20, pp. 169–188. Sociedad Matemática Mexicana, Mexico (1997)

    Google Scholar 

  80. Sobczyk, G.: The missing spectral basis in algebra and number theory. The American Mathematical Monthly, vol. 108, pp. 336–346 (2001)

    Google Scholar 

  81. Sobczyk, G.: Generalized Vandermonde determinants and applications. Aportaciones Matematicas, Serie Comunicaciones, vol. 30, pp. 203–213. Sociedad Matemática Mexicana, Mexico (2002)

    Google Scholar 

  82. Sobczyk, G.: Clifford geometric algebras in multilinear algebra and non-euclidean geometries. Byrnes, J., (ed.) Computational Noncommutative Algebra and Applications: NATO Science Series, pp. 1–28. Kluwer, Dordrecht (2004)

    Google Scholar 

  83. Sobczyk, G.: Quantum Hermite Interpolation Polynomials. Aportaciones Matematicas, Parametric Optimization and Related Topics VII 18, Sociedad Matemática Mexicana, Mexico, pp. 105-112 (2004)

    Google Scholar 

  84. Sobczyk, G.: Structure of Factor Algebras and Clifford Algebra. Linear Algebra and Its Applications, vol. 241–243, pp. 803–810, Elsevier Science, New York (1996)

    Google Scholar 

  85. Sobczyk, G.: The spectral basis and rational interpolation. Proceedings of “Curves and Surfaces.” Avignon, France, arXiv:math/0602405v1 (2006)

    Google Scholar 

  86. Sobczyk, G.: Geometric matrix algebra. Lin. Algebra Appl. 429, 1163–1173 (2008)

    Google Scholar 

  87. Sobczyk, G., Yarman, T.: Unification of Space-Time-Matter-Energy, Appl. Comput. Math. 7, No. 2, pp.255–268 (2008)

    Google Scholar 

  88. Sobczyk, G., León Sanchez, O.: The fundamental theorem of calculus. Adv. Appl. Clifford Algebras 21, 221–231 (2011)

    Google Scholar 

  89. Sobczyk, G.: Conformal mappings in geometric algebra. Not. AMS. 59(2), 264–273 (2012)

    Google Scholar 

  90. Sobczyk, G.: Unitary geometric algebra. In: Ablamowicz, R., Vaz, J. (eds.) Special Volume of Advances in Applied Clifford Algebras in Memory of Prof. Jaime Keller, pp. 283–292. Springer Basel AG (2012). http://link.springer.com/article/10.1007/s00006-011-0277-5

  91. Spiegel, M.R.: Vector Analysis and an introduction to Tensor Analysis. Schaum’s Outline Series. Schaum Publishing, New York (1959)

    Google Scholar 

  92. Spivak, M.S.: Calculus on Manifolds. W.A. Benjamin, New York (1965)

    Google Scholar 

  93. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Translated by Bartels, R., Gautschi, W., Witzgall, C. Springer, New York (1993)

    Google Scholar 

  94. Struik. D.J.: A Concise History of Mathematics. Dover, New York (1967)

    Google Scholar 

  95. Thomas, G.B., Finney, R.L.: Calculus and Analytic Geometry, 8th edn. Addison-Wesley, Reading, MA (1996)

    Google Scholar 

  96. Verma, N.: Towards an Algorithmic Realization of Nash’s Embedding Theorem. CSE, UC San Diego. http://cseweb.ucsd.edu/~naverma/manifold/nash.pdf

  97. Whitney, H.: Differentiable manifolds. Ann. Math. 37, 645–680 (1936)

    Google Scholar 

  98. Yarman, T.: The End Results of General Relativity Theory via just Energy Conservation and Quantum Mechanics, Foundations of Physics Letters, 19(7), pp. 675–694 (2006)

    Google Scholar 

  99. Young, J.W.: Projective Geometry. The Open Court Publishing Company, Chicago (1930)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sobczyk, G. (2013). Geometric Algebra. In: New Foundations in Mathematics. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8385-6_3

Download citation

Publish with us

Policies and ethics