Geometric Algebra

  • Garret Sobczyk


The real number system \(\mathbb{R}\) has a long and august history spanning a host of civilizations over a period of many centuries [17]. It may be considered the rock upon which many other mathematical systems are constructed and, at the same time, serves as a model of desirable properties that any extension of the real numbers should have.


Clifford Algebra Geometric Algebra Outer Product Antisymmetric Part Geometric Product 


  1. 1.
    Ablamowicz, R., Sobczyk, G.: Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston (2004)Google Scholar
  2. 2.
    Ahlfors, L.V.: Complex Analysis, 3rd edn. McGraw-Hill, New York (1979)Google Scholar
  3. 3.
    Baylis, W.E., Huschilt, J., Jiansu, W.: Why i? Am. J. Phys. 60(9), 788 (1992)Google Scholar
  4. 4.
    Baylis, W.E.: Electrodynamics: A Modern Geometric Approach (Progress in Mathematical Physics). Birkhäuser, Boston (1998)Google Scholar
  5. 5.
    Baylis, W.E., Sobczyk, G.: Relativity in clifford’s geometric algebras of space and spacetime. Int. J. Theor. Phys. 43(10), 1386–1399 (2004)Google Scholar
  6. 6.
    Bayro Corrochano, E., Sobczyk, G. (eds.): Geometric Algebra with Applications in Science and Engineering. Birkhäuser, Boston (2001)Google Scholar
  7. 7.
    Belinfante, J.G.F., Kolman, B.: A Survey of Lie Groups and Lie Algebras with Applications and Computational Methods. Society for Industrial and Applied Mathematics, Pennsylvania (1972)Google Scholar
  8. 8.
    Birkhoff, G.: Lie groups isomorphic with no linear group. Bull. Am. Math. Soc., 42, 882–888 (1936)Google Scholar
  9. 9.
    Born, M.: Einstein’s Theory of Relativity, rev. edn. Dover, New York (1962)Google Scholar
  10. 10.
    Brackx, F., Delanghe R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman Advanced Publishing Program, Boston (1982)Google Scholar
  11. 11.
    Brackx, F., De Schepper, H., Sommen, F.: The hermitian clifford analysis toolbox. Adv. Appl. Clifford Algebras 18, 451–487 (2008)Google Scholar
  12. 12.
    Clifford, W.K.: Applications of grassmann’s extensive algebra. Am. J. Math. 1, 350–358 (1878)Google Scholar
  13. 13.
    Clifford, W.K.: On the classification of geometric algebras, In: R. Tucker (ed.) Mathematical Papers by William Kingdon Clifford, pp. 397–401. Macmillan, London (1882) (Reprinted by Chelsea, New York, 1968)Google Scholar
  14. 14.
    Crowe, M.J.: A History of Vector Analysis. Chapter 6. Dover, New York (1985)Google Scholar
  15. 15.
    Cullen, C.G.: Matrices and Linear Transformations, 2nd edn. Dover, New York (1972)Google Scholar
  16. 16.
    Curtis, C.W.: Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, AMS and the London Mathematical Society (1999).
  17. 17.
    Dantzig, T.: NUMBER: The Language of Science, 4th edn. Free Press, New York (1967)Google Scholar
  18. 18.
    Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)Google Scholar
  19. 19.
    Doran, C., Hestenes, D., Sommen, F., Van Acker, N.: Lie groups as spin groups. J. Math. Phys., 34(8), 3642–3669 (1993)Google Scholar
  20. 20.
    Dorst, L., Doran, C., Lasenby, J. (eds.): Applications of Geometric Algebra in Computer Science and Engineering. Birkhäuser, Boston (2002)Google Scholar
  21. 21.
    Einstein, A., Lorentz, H.A., Minkowski, H., Weyl, H.: On the Electrodynamics of Moving Bodies. In: The Principle of Relativity, pp. 37–65. Dover, New York (1923). Translated from “Zur Elektrodynamik bewegter Körper”, Annalen der Physik, 17 (1905)Google Scholar
  22. 22.
    Fishback, W.T.: Projective & Euclidean Geometry, 2nd edn. Wiley, New York (1969)Google Scholar
  23. 23.
    Fjelstad, P.: Extending relativity via the perplex numbers. Am. J. Phys. 54(5), 416 (1986)Google Scholar
  24. 24.
    Flanders, H.: Differential Forms with Applications to the Physical Sciences. Dover, New York (1989)Google Scholar
  25. 25.
    French, A.P.: Special Relativity. Norton, New York (1968)Google Scholar
  26. 26.
    Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, New York (1991)Google Scholar
  27. 27.
    Friedberg, S.H., Insel, A.J., Spence, L.E.: Linear Algebra. Prentice-Hall, Englewood Cliffs (1979)Google Scholar
  28. 28.
    Gallian, J.A.: Contemporary Abstract Algebra, 6th edn. Houghton Mifflin Company, Boston (2006)Google Scholar
  29. 29.
    Gantmacher, F.R.: Theory of Matrices, translated by Hirsch, K.A. Chelsea Publishing, New York (1959)Google Scholar
  30. 30.
    Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Properties and Operations, vol. 1. Academic, New York (1964)Google Scholar
  31. 31.
    Havel, T.F.: Geometric Algebra: Parallel Processing for the Mind (Nuclear Engineering) (2002).,
  32. 32.
    Heath, T.L: Euclid’s Elements, vol. 2, p. 298, 2nd edn. Dover, New York (1956)Google Scholar
  33. 33.
    Hestenes, D.: Space Time Algebra. Gordon and Breach, New York (1966)Google Scholar
  34. 34.
    Hestenes, D.: Proper particle mechanics. J. Math. Phys. 15, 1768–1777 (1974)Google Scholar
  35. 35.
    Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math. vol. 23, pp. 65–93. Kluwer Academic, Dordrecht (1991)Google Scholar
  36. 36.
    Hestenes, D.: New Foundations for Classical Mechanics, 2nd edn. Kluwer, Dordrecht (1999)Google Scholar
  37. 37.
    Hestenes, D.: Point groups and space groups in geometric algebra, In: Doerst, L., Doran, C., Lasen, J. (eds.) Applications of Geometric Algebra with Applications in Computer Science and Engineering, pp. 3–34. Birkhauser, Boston (2002)Google Scholar
  38. 38.
    Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(6), pp. 691–714 (2003)Google Scholar
  39. 39.
    Hestenes, D.: Gauge Theory Gravity with Geometric Calculus, Foundations of Physics, 35(6):903–970 (2005)Google Scholar
  40. 40.
    Hestenes, D., Holt, J.: The crystallographic space groups in geometric algebra. J. Math. Phys. 48, 023514 (2007)Google Scholar
  41. 41.
    Hestenes, D.: Grassmann’s Legacy. In: Grassmann Bicentennial Conference (1809-1877) September 16–19, (2009) Potsdam Szczecin (DE PL).
  42. 42.
    Hestenes, D., Reany, P., Sobczyk, G.: Unipodal algebra and roots of polynomials. Adv. Appl. Clifford Algebras 1(1), 31–51 (1991)Google Scholar
  43. 43.
    Hestenes D., Sobczyk. G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, 2nd edn. Kluwer, Dordrecht (1992)Google Scholar
  44. 44.
    Hestenes, D., Ziegler, R.: Projective geometry with Clifford algebra, Acta Applicandae Mathematicae, vol. 23, p. 25–63, Kluwer Academic, Dordrecht (1991)Google Scholar
  45. 45.
    Hicks, N.J.: Notes on Differential Geometry. Van Nostrand Company, Princeton (1965)Google Scholar
  46. 46.
    Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1990)Google Scholar
  47. 47.
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)Google Scholar
  48. 48.
    James, G., Liebeck, M.: Representations and Characters of Groups, 2nd edn. Cambridge University Press, Cambridge (2001)Google Scholar
  49. 49.
    Klein, F.: Elementary Mathematics From an Advanced Standpoint, vol. 1, 3rd edn. Dover, New York (1924)Google Scholar
  50. 50.
    Lam, T.Y.: Representations of finite groups: a hundred years. Part I Notices of the AMS 45(3), 361–372 (1998)Google Scholar
  51. 51.
    Lasenby, A., Doran, C., & Gull, S.: Gravity, gauge theories and geometric algebra, Phil. Trans. R. Lond. A 356: 487–582 (1998)Google Scholar
  52. 52.
    Lee, J.M.: Manifolds and Differential Geometry, Graduate Studies in Mathematics, vol. 107. American Mathematical Society, Providence, Rhode Island (2009)Google Scholar
  53. 53.
    Linz, P.: Theoretical Numerical Analysis. Wiley, New York (1979)Google Scholar
  54. 54.
    Lounesto, P.: Clical Algebra Calculator and user manual, Helsinki University of Technology of Mathematics, Research Report 248, (1994)
  55. 55.
    Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)Google Scholar
  56. 56.
    Millman, R.S., Parker, G.D.: Elements of Differential Geometry. Prentice-Hall, Englewood Cliffs (1977)Google Scholar
  57. 57.
    Nash, J.: C1 isometric imbeddings. Ann. Math. 60(3), 383–396 (1954)Google Scholar
  58. 58.
    Nash, J.: The imbedding problem for riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)Google Scholar
  59. 59.
    Nahin, P.: An Imaginary Tale: The story of the Square Root of Minus One. Princeton University Press, Princeton (1998)Google Scholar
  60. 60.
    Nering, E.: Linear Algebra and Matrix Theory (Paperback). Wiley, New York (1976)Google Scholar
  61. 61.
    Niven, I.N., Zuckerman, H.S., Montgomery, H.L.: An Introduction to the Theory of Numbers, 5th edn. Wiley, New York (1991)Google Scholar
  62. 62.
    Oziewicz, Z.: How do you add relative velocities? In: Pogosyan, G.S., Vicent, L.E., Wolf, K.B. (eds.) Group Theoretical Methods in Physics. Institute of Physics, Bristol (2005)Google Scholar
  63. 63.
    Pontryagin, L.S.: Hermitian operators in a space with indefinite metric. Izv. Akad. Nauk SSSR Ser. Mat. 8, 243–280 (1944)Google Scholar
  64. 64.
    Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)Google Scholar
  65. 65.
    Pozo, J., Sobczyk, G.: Geometric algebra in linear algebra and geometry. Acta Appl. Math. 71, 207–244 (2002)Google Scholar
  66. 66.
    Shilov, G.E.: Linear Algebra. Dover, New York (1977)Google Scholar
  67. 67.
    Sobczyk, G.: Mappings of Surfaces in Euclidean Space using Geomtric Algebra. Ph.D dissertation, Arizona State University (1971).
  68. 68.
    Sobczyk, G.: Spacetime vector analysis. Phys. Lett. 84A, 45–49 (1981)Google Scholar
  69. 69.
    Sobczyk, G.: Conjugations and hermitian operators in spacetime. Acta Phys. Pol. B12(6), 509–521 (1981)Google Scholar
  70. 70.
    Sobczyk, G.: A complex gibbs-heaviside vector algebra for space-time. Acta Phys. Pol. B12(5), 407–418 (1981)Google Scholar
  71. 71.
    Sobczyk, G.: Unipotents, idempotents, and a spinor basis for matrices. Adv. Appl. Clifford Algebras 2(1), 51–64 (1992)Google Scholar
  72. 72.
    Sobczyk, G.: Noncommutative extensions of number: an introduction to clifford’s geometric algebra. Aportaciones Mat. Comun. 11, 207–218 (1992)Google Scholar
  73. 73.
    Sobczyk, G.: Simplicial calculus with geometric algebra. In: Micali, A., et al. (eds.) Clifford Algebras and their Applications in Mathematical Physics, p. 279–292. Kluwer, the Netherlands (1992)Google Scholar
  74. 74.
    Sobczyk, G.: Linear transformations in unitary geometric algebra. Found. Phys. 23(10), 1375–1385 (1993)Google Scholar
  75. 75.
    Sobczyk, G.: Jordan form in associative algebras. In: Oziewicz, Z., et al. (eds.) Clifford Algebras and Quantum Deformations, pp. 357–364. Kluwer, the Nethelands (2003)Google Scholar
  76. 76.
    Sobczyk, G.: Jordan form in clifford algebra. In: Bracks, F., et al. (eds.) Clifford Algebras and their Applications in Mathematical Physics, pp. 33–41. Kluwer, the Netherlands (2003)Google Scholar
  77. 77.
    Sobczyk, G.: Hyperbolic number plane. College Math. J. 26(4), 268–280 (1995)Google Scholar
  78. 78.
    Sobczyk, G.: The generalized spectral decomposition of a linear operator. College Math. J. 28(1), 27–38 (1997)Google Scholar
  79. 79.
    Sobczyk, G.: Spectral Integral Domains in the Classroom. Aportaciones Matematicas. Serie Comunicaciones, vol. 20, pp. 169–188. Sociedad Matemática Mexicana, Mexico (1997)Google Scholar
  80. 80.
    Sobczyk, G.: The missing spectral basis in algebra and number theory. The American Mathematical Monthly, vol. 108, pp. 336–346 (2001)Google Scholar
  81. 81.
    Sobczyk, G.: Generalized Vandermonde determinants and applications. Aportaciones Matematicas, Serie Comunicaciones, vol. 30, pp. 203–213. Sociedad Matemática Mexicana, Mexico (2002)Google Scholar
  82. 82.
    Sobczyk, G.: Clifford geometric algebras in multilinear algebra and non-euclidean geometries. Byrnes, J., (ed.) Computational Noncommutative Algebra and Applications: NATO Science Series, pp. 1–28. Kluwer, Dordrecht (2004)Google Scholar
  83. 83.
    Sobczyk, G.: Quantum Hermite Interpolation Polynomials. Aportaciones Matematicas, Parametric Optimization and Related Topics VII 18, Sociedad Matemática Mexicana, Mexico, pp. 105-112 (2004)Google Scholar
  84. 84.
    Sobczyk, G.: Structure of Factor Algebras and Clifford Algebra. Linear Algebra and Its Applications, vol. 241–243, pp. 803–810, Elsevier Science, New York (1996)Google Scholar
  85. 85.
    Sobczyk, G.: The spectral basis and rational interpolation. Proceedings of “Curves and Surfaces.” Avignon, France, arXiv:math/0602405v1 (2006)Google Scholar
  86. 86.
    Sobczyk, G.: Geometric matrix algebra. Lin. Algebra Appl. 429, 1163–1173 (2008)Google Scholar
  87. 87.
    Sobczyk, G., Yarman, T.: Unification of Space-Time-Matter-Energy, Appl. Comput. Math. 7, No. 2, pp.255–268 (2008)Google Scholar
  88. 88.
    Sobczyk, G., León Sanchez, O.: The fundamental theorem of calculus. Adv. Appl. Clifford Algebras 21, 221–231 (2011)Google Scholar
  89. 89.
    Sobczyk, G.: Conformal mappings in geometric algebra. Not. AMS. 59(2), 264–273 (2012)Google Scholar
  90. 90.
    Sobczyk, G.: Unitary geometric algebra. In: Ablamowicz, R., Vaz, J. (eds.) Special Volume of Advances in Applied Clifford Algebras in Memory of Prof. Jaime Keller, pp. 283–292. Springer Basel AG (2012).
  91. 91.
    Spiegel, M.R.: Vector Analysis and an introduction to Tensor Analysis. Schaum’s Outline Series. Schaum Publishing, New York (1959)Google Scholar
  92. 92.
    Spivak, M.S.: Calculus on Manifolds. W.A. Benjamin, New York (1965)Google Scholar
  93. 93.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Translated by Bartels, R., Gautschi, W., Witzgall, C. Springer, New York (1993)Google Scholar
  94. 94.
    Struik. D.J.: A Concise History of Mathematics. Dover, New York (1967)Google Scholar
  95. 95.
    Thomas, G.B., Finney, R.L.: Calculus and Analytic Geometry, 8th edn. Addison-Wesley, Reading, MA (1996)Google Scholar
  96. 96.
    Verma, N.: Towards an Algorithmic Realization of Nash’s Embedding Theorem. CSE, UC San Diego.
  97. 97.
    Whitney, H.: Differentiable manifolds. Ann. Math. 37, 645–680 (1936)Google Scholar
  98. 98.
    Yarman, T.: The End Results of General Relativity Theory via just Energy Conservation and Quantum Mechanics, Foundations of Physics Letters, 19(7), pp. 675–694 (2006)Google Scholar
  99. 99.
    Young, J.W.: Projective Geometry. The Open Court Publishing Company, Chicago (1930)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Garret Sobczyk
    • 1
  1. 1.Departamento de Física y MatemáticasUniversidad de Las AméricasPueblaMexico

Personalised recommendations