Advertisement

The Laplace Operator on the Sierpiński Gasket

  • A. A. Kirillov
Chapter

Abstract

The Laplace operator on the Sierpiński gasket. The Laplace operator on Euclidean space and its analogue on graphs. Maximum principle for harmonic functions. Eigenfunctions of the Laplace operator on the Sierpiński gasket. Comparing the spectra of the Laplace operator on different approximations.

Keywords

Quadratic Form Harmonic Function Laplace Operator Real Vector Space Smooth Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Str99.
    R.S. Stricharts, Analysis on fractals. Not. Am. Math. Soc. 46, 1999–1208 (1999) B Books Google Scholar
  2. TAV00.
    A.V. Teplyaev, Gradients on fractals. J Funct. Anal. 174, 128–154 (2000) D Web Sites http://en.wikipedia.org/wiki/Fractal http://classes.yale.edu/fractals/ http://www.faqs.org/faqs/fractal-faq/
  3. Str00.
    Robert S. Strichartz, Taylor approximations on Sierpinski gasket type fractals. J. Funct. Anal. 174, 76–127 (2000)MATHGoogle Scholar
  4. MT95.
    L. Malozemov, A. Teplyaev, Pure point spectrum of the Laplacians on fractal graphs. J. Funct. Anal. 129, 390–405 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. Ram84.
    R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45, 191–206 (1984)MathSciNetCrossRefGoogle Scholar
  6. FS92.
    M. Fukushima, T. Shima, On a spectral analysis for the Sierpiński gasket. Potential Anal. 1, 1–35 (1992)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. A. Kirillov
    • 1
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations