Quantification of Retinal Chromophores Through Autofluorescence Imaging to Identify Precursors of Age-Related Macular Degeneration

  • M. Ehler
  • J. Dobrosotskaya
  • E. J. King
  • R. F. Bonner
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Agerelated macular degeneration is a common disease that impairs central vision. To better understand early disease progression, we quantified two families of retinal chromophores: macular pigments in retinal axons and rod photoreceptor rhodopsin, whose changes have been associated with age-related maculopathy progression. First, we introduced noninvasive multispectral fluorescence imaging of the human retina and quantified macular pigments from those multispectral image sets. Second, we modeled the brightening of the lipofuscin autofluorescence in confocal scanning laser ophthalmoscopy imaging sequences to map local rod rhodopsin density.


Retinal Pigment Epithelium Macular Pigment Lipofuscin Granule Autofluorescence Image Retinal Chromophore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research was funded by intramural research funds from the National Institute of Child Health and Human Development, National Institutes of Health. M. E. is supported by the NIH/DFG Research Career Transition Awards Program (EH 405/1-1/575910). J.D. was supported by NSF (CBET0854233). E.J.K. is supported by the Alexander von Humboldt Foundation.


  1. 1.
    Alpern, M., Pugh, E.N. Jr.: The density and photosensitivity of human rhodopsin in the living retina. J. Physiol. 237, 341–370 (1974)Google Scholar
  2. 2.
    Bird, A.C., Bressler, N.M., Bressler, S.B., Chisholm, I.H., Coscas, G., Davis, M.D., de Jong, P.T., Klaver, C.C., Klein, B.E., Klein, R.: An international classification and grading system for age-related maculopathy and age-related macular degeneration. The international ARM epidemiological study group. Surv.  Ophthalmol. 39(5), 367–374 (1995)Google Scholar
  3. 3.
    Cameron, A.M., Miao, L., Ruseckaite, R., Pianta, M.J., Lamb, T.D.: Dark adaptation recovery of human rod bipolar cell response kinetics estimated from scotopic b-wave measurements. J.  Physiol. 586(Pt 22), 5419–5436 (2008)Google Scholar
  4. 4.
    Chew, E.Y., Lindblad, A.S., Clemons, T., and Age-Related Eye Disease Study Research Group. Summary results and recommendations from the age-related eye disease study. Arch.  Ophthalmol. 127(12), 1678–1679 (2009)Google Scholar
  5. 5.
    Coleman, H.R., Chan, C., Ferris, F.L., Chew, E. Y.: Age-related macular degeneration. Lancet 372(9652), 1835–1845 (2008)Google Scholar
  6. 6.
    Cunningham, D., Caruso, R.C., Ferris, F.L.: Case report: Retinal bleaching during fundus autofluorescence using a confocal scanning laser ophthalmoscope. J. Ophthalmic Photogr. 29, 93–94 (2007)Google Scholar
  7. 7.
    Dobrosotskaya, J., Ehler, M., et al.: Sparse representation and variational methods in retinal image processing. In: International Federation for Medical & Biological Engineering. Springer Proceedings Series. 26th Southern Biomedical Engineering Conference. Springer, Berlin (2010)Google Scholar
  8. 8.
    Dobrosotskaya, J., Ehler, M., et al.: Modeling of the rhodopsin bleaching with variational analysis of retinal images. SPIE Medical Imaging (2011)Google Scholar
  9. 9.
    Ehler, M., Majumdar, Z., et al.: High-resolution autofluorescence imaging for mapping molecular processes within the human retina. In: International Federation for Medical & Biological Engineering, Springer Proceedings Series. 26th Southern Biomedical Engineering Conference, Springer, Berlin (2010)Google Scholar
  10. 10.
    Ehler, M., Kainerstorfer, J., Cunningham, D., et al.: Extended correction model for optical imaging. In: IEEE International Conference on Computational Advances in Bio and Medical Sciences, pp. 93–98 (2011)Google Scholar
  11. 11.
    Ehler, M., Dobrosotskaya, J., et al.: Modeling photo-bleaching kinetics to map local variations in rod rhodopsin density. SPIE Medical Imaging, Computer-Aided Diagnosis 7963(2011)Google Scholar
  12. 12.
    Ehler, M., Dobrosotskaya, J., King, E., Czaja, W., Bonner, R.F.: Modeling photo-bleaching kinetics to create high resolution maps of rod rhodopsin in the human retina. preprint (2012)Google Scholar
  13. 13.
    Delori, F.C., et al.: Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J.  Opt.  Soc.  Am.  A.  Opt.  Image Sci.  Vis. 18(6), 1212–1230 (2001)Google Scholar
  14. 14.
    Gloster, J., Greaves, D.P.: A study of bleaching of the fundus oculi in pigmentary degenerations of the retina. Br.  J.  Ophthalmol. 48, 260–73 (1964)Google Scholar
  15. 15.
    Jackson, G.R., Owsley, C., McGwin, G. Jr.: Aging and dark adaptation. Vision Res. 39(23), 3975–3982 (1999)Google Scholar
  16. 16.
    McGwin, G. Jr., Jackson, G.R., Owsley, C.: Using nonlinear regression to estimate parameters of dark adaptation. Behav.  Res.  Methods Instrum.  Comput. 31(4), 712–717 (1999)Google Scholar
  17. 17.
    Kainerstorfer, J., Amyot, F., Ehler, M., et al.: Direct curvature correction for non-contact imaging modalities—applied to multi-spectral imaging. J.  Biomed.  Opt. (2010)Google Scholar
  18. 18.
    Kainerstorfer, J., Ehler, M., et. al.: Principal component model of multi spectral data for near real-time skin chromophore mapping. J.  Biomed.  Opt. 15(2010)Google Scholar
  19. 19.
    Kainerstorfer, J., Riley, J.D., Ehler, M., et al.: Quantitative principal component model for skin chromophore mapping using multi spectral images and spatial priors. Biomed. Opt. Exp., 2(5), 1040–1058 (2011)Google Scholar
  20. 20.
    Krishnadev, N., Meleth, A.D., Chew, E.Y.: Nutritional supplements for age-related macular degeneration. Curr.  Opin.  Ophthalmol. 21(3), 184–9 (2010)Google Scholar
  21. 21.
    Lamb, T.D., Pugh, E.N. Jr.: Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest.  Ophthalmol.  Vis.  Sci. 47(12), 5137–52 (2006)Google Scholar
  22. 22.
    Lyubarsky, A.L., Daniele, L.L., Pugh, E.N. Jr.: From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse erg. Vision Res. 44(28), 3235–3251 (2004)Google Scholar
  23. 23.
    Mahroo, O.A.R., Lamb, T.D.: Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics. J.  Physiol. 554(Pt 2), 417–437 (2004)Google Scholar
  24. 24.
    Meyers, S.M., Ostrovsky, M.A., Bonner, R.F.: A model of spectral filtering to reduce photochemical damage in age-related macular degeneration. Trans.  Am.  Ophthalmol.  Soc. 102, 83–93; discussion 93–95 (2004)Google Scholar
  25. 25.
    Rushton, W.A.H., Powell, D.S.: The rhodopsin content and the visual threshold of human rods. Vision Res. 12, 1073–1081 (1972)Google Scholar
  26. 26.
    Sandberg, M.A., Weigel-DiFranco, C., Rosner, B., Berso, E.L.: The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. Invest.  Ophthalmol.  Vis.  Sci. 37(8), 1693–1698 (1996)Google Scholar
  27. 27.
    Theelen, T., Berendschot, T.T.J.M., Boon, C.J.F., Hoyng, C.B., Klevering, B.J.: Analysis of visual pigment by fundus autofluorescence. Exp.  Eye Res. 86(2), 296–304 (2008)Google Scholar
  28. 28.
    Thomas, M.M., Lamb, T.D.: Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram. J.  Physiol. 518(Pt 2), 479–496 (1999)Google Scholar
  29. 29.
    U.S. Department of Agriculture: USDA National Nutrient Database for Standard Reference, Release 24. Agricultural Research Service (2011)Google Scholar

Copyright information

© Birkhäuser Boston 2013

Authors and Affiliations

  • M. Ehler
    • 1
  • J. Dobrosotskaya
    • 2
  • E. J. King
    • 3
  • R. F. Bonner
    • 4
  1. 1.Helmholtz Zentrum MunichInstitute of Biomathematics and BiometryNeuherbergGermany
  2. 2.Mathematics DepartmentUniversity of MarylandCollege ParkUSA
  3. 3.Department of MathematicsTechnical University BerlinBerlinGermany
  4. 4.Section on Medical BiophysicsNICHD, National Institutes of HealthBethesdaUSA

Personalised recommendations