Skip to main content

Multistatic Radar Waveforms for Imaging of Moving Targets

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We develop a linearized imaging theory that combines the spatial, temporal, and spectral aspects of scattered waves. We consider the case of fixed sensors and a general distribution of objects, each undergoing linear motion; thus the theory deals with imaging distributions in phase space. We derive a model for the data that is appropriate for narrowband waveforms in the case when the targets are moving slowly relative to the speed of light. From this model, we develop a phase-space imaging formula that can be interpreted in terms of filtered back projection or matched filtering. For this imaging approach, we derive the corresponding phase-space point-spread function. We show plots of the phase-space point-spread function for various geometries. We also show that in special cases, the theory reduces to (a) range-Doppler imaging, (b) inverse synthetic aperture radar (ISAR), (c) synthetic aperture radar (SAR), (d) Doppler SAR, and (e) tomography of moving targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Consequently the US government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the US government.

References

  1. Skolnik, M.I.: Radar Handbook, 3rd Edition. McGraw-Hill Professional, New York (2008)

    Google Scholar 

  2. Brennan, L.E., Reed, I.S.: IEEE Trans. Aerosp. Electronic Syst. 9, 237 (1973)

    Google Scholar 

  3. Raney, R.K.: IEEE Trans. Aerosp. Electronic Syst. 7(3), 499 (1971)

    Google Scholar 

  4. Ward, J.: Space-time Adaptive processing for airborne radar. Technique Rep. 1015, MIT Lincoln Lab., Lexington, MA (1994)

    Google Scholar 

  5. Klemm, R.: Principles of Space-Time Adaptive Processing. Institution of Electrical Engineers, London (2002)

    Google Scholar 

  6. Cooper, J.: IEEE Trans. Antennas and Propag. AP-28(6), 791 (1980)

    Google Scholar 

  7. Werness, S., Carrara, W., Joyce, L., Franczak, D.: IEEE Trans. Aerosp. Electronic Syst. 26(1), 57 (1990)

    Google Scholar 

  8. Yang, H., Soumekh, M.: IEEE Trans. Image Process. 2(1), 80 (1993)

    Google Scholar 

  9. Barbarossa, S.: Proc. Inst. Elect. Eng. F 139, 79 (1992)

    Google Scholar 

  10. Barbarossa, S.: Proc. Inst. Elect. Eng. F 139, 89 (1992)

    Google Scholar 

  11. Friedlander, B.,  Porat, B.: IEE Proc. Radar, Sonar Navigation 144, 205 (1997)

    Google Scholar 

  12. Perry, R.P., Dipietro, R.C., Fante, R.L.: IEEE Trans. Aerosp. Electronic Syst. 35(1), 188 (1999)

    Google Scholar 

  13. Jao, J.K.: IEEE Trans. Geosci. Remote Sens. 39(9), 1984 (2001)

    Google Scholar 

  14. Fienup, J.R.: IEEE Trans. Aerosp. Electronic Syst. 37(3), 794 (2001)

    Google Scholar 

  15. Dias, J.M.B., Marques, P.A.C.: IEEE Trans. Aerosp. Electronic Syst. 39(2), 604 (2003)

    Google Scholar 

  16. Kircht, M.: IEE Proc. Radar, Sonar Navigation 150(1), 7 (2003)

    Google Scholar 

  17. Pettersson, M.: IEEE Trans. Aerosp. Electronic Syst. 40, 780 (2004)

    Google Scholar 

  18. Minardi, M.J., Gorham, L.A., Zelnio, E.G. In: Proceedings of SPIE, vol. 5808, pp. 156–165 (2005)

    Google Scholar 

  19. Barbarossa, S., Farina, A.: IEEE Trans. Aerosp. Electronic Syst. 30(2), 341 (1998)

    Google Scholar 

  20. Soumekh, M.: Fourier Array Imaging. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  21. Soumekh, M.: Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. Wiley-Interscience, New York (1999)

    Google Scholar 

  22. Stuff, M., Biancalana, M., Arnold, G., Garbarino, J. In: Proceedings of IEEE Radar Conference, pp. 94–98 (2004)

    Google Scholar 

  23. Himed, B., Bascom, H., Clancy, J., Wicks, M.C.: Sensors, Systems, and Next-Generation Satellites V. In: Proceedings of SPIE, vol. 4540, pp. 608–619 (2001)

    Google Scholar 

  24. Bradaric, I., Capraro, G.T., Weiner, D.D., Wicks, M.C. In: Proceedings of IEEE Radar Conference 2006, pp. 106–113 (2006)

    Google Scholar 

  25. Bradaric, I., Capraro, G.T., Wicks, M.C. In: Proceedings of Asilomar Conference (2007)

    Google Scholar 

  26. Adve, R.S., Schneible, R.A., Wicks, M.C., McMillan, R. In: Proceedings of 1st Annual IEE Waveform Diversity Conference, Edinburgh (2004)

    Google Scholar 

  27. Adve, R.S., Schneible, R.A., Genello, G., Antonik, P. In: 2005 IEEE International Radar Conference Record, pp. 93–97 (2005)

    Google Scholar 

  28. Landi, L., Adve, R.S. In: 2007 International Waveform Diversity and Design Conference, pp. 13–17 (2007)

    Google Scholar 

  29. Capraro, G.T., Bradaric, I., Weiner, D.D., Day, J.P.R., Wicks, M.C. In: International Waveform Diversity and Design Conference, Lihue, HI (2006)

    Google Scholar 

  30. Cook, C.E., Bernfeld, M.: Radar Signals. Academic, New York (1965)

    Google Scholar 

  31. Woodward, P.M.: Probability and Information Theory, with Applications to Radar. McGraw-Hill, New York (1953)

    Google Scholar 

  32. Levanon, N.: Radar Principles. Wiley, New York (1998)

    Google Scholar 

  33. Franceschetti, G., Lanari, R.: Synthetic Aperture Radar Processing. CRC Press, New York (1999)

    Google Scholar 

  34. Willis, N.J.: Bistatic Radar. Artech House, Norwood (1991)

    Google Scholar 

  35. Willis, N.J.: Bistatic Radar in Radar Handbook, 2nd edn. In: Skolnik, M. I. (ed.) McGraw-Hill, New York (1990)

    Google Scholar 

  36. Borden, B.,  Cheney, M.:  Inverse Probl. 21, 1 (2005)

    Google Scholar 

  37. Willis, N.J., Griffiths, H.D.: Advances in Bistatic Radar. SciTech Publishing, Raleigh (2007)

    Google Scholar 

  38. Tsao, T., Slamani, M., Varshney, P., Weiner, D., Schwarzlander, H., Borek, S.: IEEE Trans. Aerosp. Electronic Syst. 33, 1041 (1997)

    Google Scholar 

  39. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer (1992)

    Google Scholar 

  40. Devaney, A.J.: Opt. Lett. 7, 111 (1982)

    Google Scholar 

  41. Devaney, A.J.: Ultrason. Imaging 4, 336 (1982)

    Google Scholar 

  42. Varsolt, T., Yazici, B., Cheney, M.: Inverse Probl. 24(4), 045013 (28 pp.) (2008)

    Google Scholar 

  43. Cheney, M., Borden, B.: Inverse Probl. 24, 035005(1 (2008)

    Google Scholar 

  44. Nolan, C.J., Cheney, M.: Inverse Probl. 18, 221 (2002)

    Google Scholar 

  45. Swick, D.: A Review of Wideband Ambiguity Functions. (Naval Research Laboratory Rep. 6994, 1969)

    Google Scholar 

  46. Webster, T., Liwei, Xu., Cheney, M.: IEEE Radar Conference (RADAR), Radar Div., Naval Res. Lab., Conference Publications. Washington, DC, USA 332–337 (2012)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Air Force Office of Scientific ResearchFootnote 1 for supporting this work under agreement FA9550-09-1-0013 and to the China Scholarship Council for supporting L.W.’s stay at Rensselaer Polytechnic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Cheney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Cheney, M., Borden, B., Wang, L. (2013). Multistatic Radar Waveforms for Imaging of Moving Targets. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8376-4_7

Download citation

Publish with us

Policies and ethics