Skip to main content

Fusion Frames and Unbiased Basic Sequences

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 1

Abstract

The construction of Parseval frames with special, rigid geometric properties has left many open problems even after decades of efforts. The construction of similar types of fusion frames is even less developed. We construct a large family of equi-isoclinic Parseval fusion frames by taking the Naimark complement of the union of orthonormal bases. If these bases are chosen to be mutually unbiased, then the resulting fusion frame subspaces are spanned by mutually unbiased basic sequences. By giving an explicit representation for Naimark complements, we are able to construct concrete fusion frames in their respective Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15(4), 488–501 (2009)

    Google Scholar 

  2. Bodmann, B.G.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22, 274–285 (2007)

    Google Scholar 

  3. Bodmann, B.G., Casazza, P.G., Paulsen, V.I., Speegle, D.: Spanning and independence properties of frame partitions. Proc. Amer. Math. Soc. 140, 2193–2207 (2012).

    Google Scholar 

  4. Cahill, J., Casazza, P.G., Li, S.: Non-orthogonal fusion frames and the sparsity of the fusion frame operator. J. Fourier Anal. Appl. 18, 287–308 (2012)

    Google Scholar 

  5. Calderbank, A.R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35(1), 1–31 (2011)

    Google Scholar 

  6. Calderbank, A.R., Hardin, R.H., Rains, E.M., Shore, P.W., Sloane, N.J.A.: A Group-Theoretic Framework for the Construction of Packings in Grassmannian Spaces. AT&T Labs, Florham Park (1997)

    Google Scholar 

  7. Casazza, P.G., Fickus, M., Heinecke, A., Wang, Y., Zhou, Z.: Spectral tetris fusion frame constructions. J. Fourier Anal. Appl. 18(4), 828–851 (2012)

    Google Scholar 

  8. Casazza, P.G., Fickus, M., Mixon, D.G., Peterson, J., Smalyanau, I.: Every Hilbert space frame has a Naimark complement. Preprint

    Google Scholar 

  9. Casazza, P.G., Fickus, M., Mixon, D.G., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011)

    Google Scholar 

  10. Casazza, P.G., Kutyniok, G.: Frames of subspaces. In: Wavelets, Frames and Operator Theory: College Park 2003. Contemp. Math. vol. 345, pp. 87–113 AMS, Providence RI (2004)

    Google Scholar 

  11. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmonic Anal. 25, 114–132 (2008)

    Google Scholar 

  12. Casazza, P.G., Kutyniok, G.: Robustness of fusion frames under erasures of subspaces and of local frame vectors. In: Radon Transforms, Geometry, and Wavelets: New Orleans 2006. Contemp. Math. vol. 464, pp. 149–160, Amer. Math. Soc., Providence, RI (2008)

    Google Scholar 

  13. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    Google Scholar 

  14. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Experiment. Math. 5(2), 139–159 (1996)

    Google Scholar 

  15. Et-Taoui, B.: Equi-isoclinic planes of Euclidean spaces. Indag. Math. (N.S.) 17(2), 205–219 (2006)

    Google Scholar 

  16. Et-Taoui, B.: Equi-isoclinic planes in Euclidean even dimensional spaces. Adv. Geom. 7(3), 379–384 (2007)

    Google Scholar 

  17. Et-Taoui, B., Fruchard, A.: Sous-espaces qui-isoclins de l’espace euclidien. (French) [Equi-isoclinic subspaces of Euclidean space] Adv. Geom. 9(4), 471–515 (2009)

    Google Scholar 

  18. Godsil, C.D., Hensel, A.D.: Distance regular covers of the complete graph. J. Combin. Theor. Ser. B 56(2), 205–238 (1992)

    Google Scholar 

  19. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhaüser, Boston (2000)

    Google Scholar 

  20. Han, D., Larson, D.R.: Frames, bases and group representations. Memoirs AMS 697 (2000)

    Google Scholar 

  21. Hoggar, S.G.: New sets of equi-isoclinic n-planes from old. Proc. Edinburgh Math. Soc. 20(2), 287–291 (1976/77)

    Google Scholar 

  22. King, E.J.: Grassmannian fusion frames. Preprint

    Google Scholar 

  23. Kutyniok, G., Pezeshki, A., Calderbank, A.R.: Fusion frames and Robust Dimension Reduction. In: 42nd Annual Conference on Information Sciences and Systems (CISS). Princeton University, Princeton, NJ (2008)

    Google Scholar 

  24. Kutyniok, G., Pezeshki, A., Calderbank, A.R., Liu, T.: Robust dimension reduction, fusion frames, and grassmannian packings. Appl. Comput. Harmonic Anal. 26, 64–76 (2009)

    Google Scholar 

  25. Lemmens, P.W.H., Seidel, J.J.: Equi-isoclinic subspaces of Euclidean spaces. Nederl. Akad. Wetensch. Proc. Ser. A 76 Indag. Math. 35, 98–107 (1973)

    Google Scholar 

  26. Masses, P., Ruiz, M., Stojanoff, D.: The structure of minimizers of the frame potential on fusion frames. J. Fourier Anal. Appl. J. Fourier Anal. Appl. 16(4), 514–543 (2010)

    Google Scholar 

  27. Miao, J., Ben-Israel, A.: On Principal Angles between Subspaces in R n. Linear Algebra Appl. 171, 81–98 (1992)

    Google Scholar 

  28. Oswald, P.: Frames and space splittings in Hilbert spaces. Lecture notes. http://www.faculty.jacobs-university.de/poswald

  29. Qiu, L., Zhang, Y., Li, C.-K.: Unitarily invariant metrics on the Grassmann space. SIAM J. Matrix Anal. Appl. 27(2), 507–531 (2005)

    Google Scholar 

  30. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    Google Scholar 

  31. Sun, W.: Stability of g-frames. J. Math. Anal. Appl. 326(2), 858–868 (2007)

    Google Scholar 

  32. Wootters, W.K.: Quantum mechanics without probability amplitudes. Found. Phys. 16(4), 391–405 (1986)

    Google Scholar 

  33. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Physics 191(2), 363–381 (1989)

    Google Scholar 

Download references

Acknowledgements

Bernhard G. Bodmann was Supported by NSF DMS 0807399. Peter G. Casazza, Jesse D. Peterson, Ihar Smalyanau and Janet C. Tremain were Supported by NSF DMS 1008183, NSF ATD 1042701, and AFOSR FA9550-11-1-0245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard G. Bodmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Bodmann, B.G., Casazza, P.G., Peterson, J.D., Smalyanau, I., Tremain, J.C. (2013). Fusion Frames and Unbiased Basic Sequences. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8376-4_2

Download citation

Publish with us

Policies and ethics