Skip to main content

Harmonic Analysis of Databases and Matrices

  • Chapter
  • First Online:
  • 1845 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We describe methods to organize and process matrices/databases through a bi-multiscale tensor product harmonic Analysis on row and column functions. The goal is to reorganize the matrix so that its entries exhibit smoothness or predictability relative to the tensor row column geometry. In particular we show that approximate bi-Holder smoothness follows from simple l p entropy conditions. We describe various applications both for the analysis of matrices of linear transformations, as well for the extraction of information and structure in document databases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Scientific Comput. 14(1), 159–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartal, Y.: In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 184–193 (1996)

    Google Scholar 

  3. Bartal, Y.: In: Proceedings of the 30th annual ACM Symposium on Theory of computing, ACM, pp. 161–168 (1998)

    Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14, 585–591 (2001)

    Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 13, 1373–1397 (2003)

    Article  Google Scholar 

  6. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13,147–269 (2004)

    Article  MathSciNet  Google Scholar 

  7. Coifman, R.R., Gavish, M.: Harmonic Analysis of digital data bases. In: Cohen, J., Zayed, A. (eds.) Wavelets and Multiscale Analysis. Birkhäuser, Boston (2011)

    Google Scholar 

  8. Coifman, R.R., Lafon, S.: Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comp. Harmonic Anal. 21(1), 31–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coifman, R. R., Lafon, S., Lee, A., Maggioni, M.,Nadler, B., Warner, F., Zucker, S.: Geometric diffusions as a tool for harmonic Analysis and structure defnition of data, Part I: diffusion maps. Proc. Natl. Acad. Sci. 102, 7426–7431 (2005)

    Google Scholar 

  10. Coifman, R.R., Rochberg, R.: Another characterization of B.M.O. Proc. Am. Math. Soc. 79, 249–254 (1980)

    Google Scholar 

  11. Coifman, R.R., Singer, A.: Non-linear independent component analysis with diffusion maps. Appl. Comput. Harmonic Anal. 25, 226–239 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavish, M., Coifman, R.R.: Sampling, denoising and compression of matrices, by coherent matrix organization. Appl. Comput. Harmonic Anal. (To Appear, 2012)

    Google Scholar 

  13. Gavish, M., Nadler, B., Coifman, R.R.: Multiscale wavelets on trees, graphs and high dimensional data: theory and applications to semi supervised learning. In: Proceedings of the 27th International Conference on Machine Learning, ICML (2010)

    Google Scholar 

  14. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Priebe, C.E., Marchette, D.J., Park, Y., Wegman, E.J., Solka, J.L., Socolinsky, D.A., Karakos, D., Church, K.W., Guglielmi, R., Coifman, R.R., Link, D., Healy, D.M., Jacobs, M.Q., Tsao, A.: Iterative denoising for cross-corpus discovery. In: Proceedings of COMPSTAT 2004, Physica-Verlag/Springer (2004)

    Google Scholar 

  16. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmonic Anal. 30(1), 20–36 (2011)

    Article  MATH  Google Scholar 

  17. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240–243 (1963) (Russian originalin Dokl. Akad. Nauk SSSR 148, 1042–1045, 1963)

    MATH  Google Scholar 

Download references

Acknowledgements

MG is supported by a William R. and Sara Hart Kimball Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Coifman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Birkhäuser Boston

About this chapter

Cite this chapter

Coifman, R.R., Gavish, M. (2013). Harmonic Analysis of Databases and Matrices. In: Andrews, T., Balan, R., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 1. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8376-4_15

Download citation

Publish with us

Policies and ethics