Skip to main content

Constructing Finite Frames with a Given Spectrum

  • Chapter
Finite Frames

Abstract

Broadly speaking, frame theory is the study of how to produce well-conditioned frame operators, often subject to nonlinear application-motivated restrictions on the frame vectors themselves. In this chapter, we focus on one particularly well-studied type of restriction: having frame vectors of prescribed lengths. We discuss two methods for iteratively constructing such frames. The first method, called Spectral Tetris, produces special examples of such frames, and only works in certain cases. The second method combines the idea behind Spectral Tetris with the classical theory of majorization; this method can build any such frame in terms of a sequence of interlacing spectra, called eigensteps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur-Horn theorem for operators and frames with prescribed norms and frame operator. Ill. J. Math. 51, 537–560 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Batson, J., Spielman, D.A., Srivastava, N.: Twice-Ramanujan sparsifiers. In: Proc. STOC’09, pp. 255–262 (2009)

    Google Scholar 

  3. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18, 357–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodmann, B.G., Casazza, P.G.: The road to equal-norm Parseval frames. J. Funct. Anal. 258, 397–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. (submitted). arXiv:1106.0921

  6. Calderbank, R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35, 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casazza, P.G., Fickus, M., Heinecke, A., Wang, Y., Zhou, Z.: Spectral Tetris fusion frame constructions. J. Fourier Anal. Appl.

    Google Scholar 

  8. Casazza, P.G., Fickus, M., Kovačević, J., Leon, M.T., Tremain, J.C.: A physical interpretation of tight frames. In: Heil, C. (ed.) Harmonic Analysis and Applications: In Honor of John J. Benedetto, pp. 51–76. Birkhäuser, Boston (2006)

    Google Scholar 

  9. Casazza, P.G., Fickus, M., Mixon, D.G.: Auto-tuning unit norm tight frames. Appl. Comput. Harmon. Anal. 32, 1–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casazza, P.G., Fickus, M., Mixon, D.G., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casazza, P.G., Heinecke, A., Krahmer, F., Kutyniok, G.: Optimally sparse frames. IEEE Trans. Inf. Theory 57, 7279–7287 (2011)

    Article  MathSciNet  Google Scholar 

  12. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18, 387–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casazza, P.G., Leon, M.T.: Existence and construction of finite tight frames. J. Comput. Appl. Math. 4, 277–289 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Chu, M.T.: Constructing a Hermitian matrix from its diagonal entries and eigenvalues. SIAM J. Matrix Anal. Appl. 16, 207–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dhillon, I.S., Heath, R.W., Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27, 61–71 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dykema, K., Freeman, D., Kornelson, K., Larson, D., Ordower, M., Weber, E.: Ellipsoidal tight frames and projection decomposition of operators. Ill. J. Math. 48, 477–489 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure Appl. Math. 28, 217–256 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Fickus, M., Mixon, D.G., Poteet, M.J.: Frame completions for optimally robust reconstruction. Proc. SPIE 8138, 81380Q/1-8 (2011)

    Google Scholar 

  19. Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing all self-adjoint matrices with prescribed spectrum and diagonal (submitted). arXiv:1107.2173

  20. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in ℝN: analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44, 16–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Higham, N.J.: Matrix nearness problems and applications. In: Gover, M.J.C., Barnett, S. (eds.) Applications of Matrix Theory, pp. 1–27. Oxford University Press, Oxford (1989)

    Google Scholar 

  23. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math. 76, 620–630 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  26. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (Part I). IEEE Signal Process. Mag. 24, 86–104 (2007)

    Google Scholar 

  27. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (Part II). IEEE Signal Process. Mag. 24, 115–125 (2007)

    Google Scholar 

  28. Massey, P., Ruiz, M.: Tight frame completions with prescribed norms. Sampl. Theory Signal. Image Process. 7, 1–13 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsber. Berl. Math. Ges. 22, 9–20 (1923)

    Google Scholar 

  30. Strawn, N.: Finite frame varieties: nonsingular points, tangent spaces, and explicit local parameterizations. J. Fourier Anal. Appl. 17, 821–853 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tropp, J.A., Dhillon, I.S., Heath, R.W.: Finite-step algorithms for constructing optimal CDMA signature sequences. IEEE Trans. Inf. Theory 50, 2916–2921 (2004)

    Article  MathSciNet  Google Scholar 

  32. Tropp, J.A., Dhillon, I.S., Heath, R.W., Strohmer, T.: Designing structured tight frames via an alternating projection method. IEEE Trans. Inf. Theory 51, 188–209 (2005)

    Article  MathSciNet  Google Scholar 

  33. Viswanath, P., Anantharam, V.: Optimal sequences and sum capacity of synchronous CDMA systems. IEEE Trans. Inf. Theory 45, 1984–1991 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Waldron, S.: Generalized Welch bound equality sequences are tight frames. IEEE Trans. Inf. Theory 49, 2307–2309 (2003)

    Article  MathSciNet  Google Scholar 

  35. Welch, L.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 20, 397–399 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF DMS 1042701, NSF CCF 1017278, AFOSR F1ATA01103J001, AFOSR F1ATA00183G003, and the A.B. Krongard Fellowship. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, the U.S. Government, or Thomas Jefferson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Fickus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fickus, M., Mixon, D.G., Poteet, M.J. (2013). Constructing Finite Frames with a Given Spectrum. In: Casazza, P., Kutyniok, G. (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8373-3_2

Download citation

Publish with us

Policies and ethics