Advertisement

Ageing Concepts

  • N. Unnikrishnan Nair
  • P. G. Sankaran
  • N. Balakrishnan
Chapter
Part of the Statistics for Industry and Technology book series (SIT)

Abstract

A considerable part of reliability theory is dedicated to the study of ageing concepts, their properties, implications and applications. In this chapter, we review some of the important results in this area and translate the basic definitions to make them amenable for a quantile-based analysis. Ageing represents the phenomenon by which the residual life of a unit is affected by its age in some probabilistic sense. It can be positive ageing, negative ageing or no ageing, according to whether the residual lifetime decreases, increases or remains the same as age advances. Generally, one investigates whether a given ageing concept preserves certain reliability operations such as formation of coherent structures, mixtures and convolutions. We first introduce the basic ideas behind convergence, mixtures, convolutions, shock models and equilibrium distributions. The ageing concepts are studied under three broad categories—based on hazard functions, residual life functions and survival functions. The IHR, IHR(2), IGHR, NBUHR, NBUHRA, SIHR, IHRA, DMTTF, IHRA* t 0 classes and their duals along with their properties come under ageing notions related to the hazard function. In the class of concepts based on residual life, we discuss DMRL, DMRLHA, UBA, UBAE, HUBAE, DRMRL, DVRL, DVRLA, NDMRL, NDVRL, IPRL-α, DMERL classes and their duals. Those defined in terms of the survival function include NBU, NBU-t 0, NBU* t 0, NBU(2), SNBU, NBUE, NBU(2)-t 0, NBUL, NBUP-α, NBUE, HNBUE, \(\mathcal{L}\)-class, \(\mathcal{M}\)-class and the renewal notions NBRU, RNBU, RNBUE, RNBRU and RNBRUE. A brief discussion is also made on classes of distributions possessing monotonic properties for reliability concepts in reversed time. The ageing properties of the quantile function models introduced in  Chap. 3 are presented. Finally, some definitions and results on relative ageing are detailed.

Keywords

Hazard Rate Survival Function Residual Life Quantile Function Coherent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Abdel-Aziz, A.A.: On testing exponentiality against RNBRUE alternative. Contr. Cybern. 34, 1175–1180 (2007)Google Scholar
  2. 4.
    Abouammoh, A., El-Neweihi, E.: Closure of NBUE and DMRL under the formation of parallel systems. Stat. Probab. Lett. 4, 223–225 (1986)MathSciNetMATHCrossRefGoogle Scholar
  3. 5.
    Abouammoh, A.M., Ahmed, A.N.: The new better than used failure rate class of life distributions. Adv. Appl. Probab. 20, 237–240 (1988)MathSciNetMATHCrossRefGoogle Scholar
  4. 6.
    Abouammoh, A.M., Ahmed, A.N., Barry, A.M.: Shock models and testing for the mean inactivity time. Microelectron. Reliab. 33, 729–740 (1993)CrossRefGoogle Scholar
  5. 7.
    Abouammoh, A.M., Ahmed, R., Khalique, A.: On renewal better than used classes of ageing. Stat. Probab. Lett. 48, 189–194 (2000)MATHCrossRefGoogle Scholar
  6. 8.
    Abouammoh, A.M., Kanjo, A., Khalique, A.: On aspects of variance residual life distributions. Microelectron. Reliab. 30, 751–760 (1990)CrossRefGoogle Scholar
  7. 10.
    Abouammoh, A.M., Qamber, I.S.: New better than renewal-used classes of life distribution. IEEE Trans. Reliab. 52, 150–153 (2003)CrossRefGoogle Scholar
  8. 13.
    Abraham, B., Nair, N.U.: A criterion to distinguish ageing patterns. Statistics 47, 85–92 (2013)MathSciNetMATHCrossRefGoogle Scholar
  9. 16.
    Abu-Youssef, S.E.: A moment inequality for decreasing (increasing) mean residual life distribution with hypothesis testing applications. Stat. Probab. Lett. 57, 171–177 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 21.
    Ahmad, I.A.: Moments inequalities of ageing families of distributions with hypothesis testing applications. J. Stat. Plann. Infer. 92, 121–132 (2001)MATHCrossRefGoogle Scholar
  11. 22.
    Ahmad, I.A.: Some properties of classes of life distributions with unknown age. Stat. Probab. Lett. 69, 333–342 (2004)MATHCrossRefGoogle Scholar
  12. 26.
    Ahmad, I.A., Mugadi, A.R.: Further moment inequalities of life distributions with hypothesis testing applications, the IFRA, NBUC and DMRL classes. J. Stat. Plann. Infer. 120, 1–12 (2004)MATHCrossRefGoogle Scholar
  13. 30.
    Al-Ruzaiza, A.C., Hendi, M.I., Abu-Youssef, S.E.: A note on moment inequality for HNBUE property with hypothesis testing applications. J. Nonparametr. Stat. 15, 267–272 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 31.
    Al-Wasel, I.A., El-Bassiouny, A.H., Kayid, M.: Some results on NBUL class of life distributions. Appl. Math. Sci. 1, 869–881 (2007)MathSciNetMATHGoogle Scholar
  15. 32.
    Al-Zahrani, B., Stoyanov, J.: Moment inequalities for DVRL distributions, characterization and testing for exponentiality. Stat. Probab. Lett. 78, 1792–1799 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 36.
    Alzaid, A.A.: Ageing concerning of items of unknown age. Stoch. Model. 10, 649–659 (1994)MathSciNetMATHCrossRefGoogle Scholar
  17. 39.
    Asha, G., Nair, N.U.: Reliability properties of mean time to failure in age replacement models. Int. J. Reliab. Qual. Saf. Eng. 17, 15–26 (2010)CrossRefGoogle Scholar
  18. 69.
    Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing. To Begin with, Silver Spring (1981)Google Scholar
  19. 70.
    Barlow, R.E., Proschan, F.: Mathematical Theory of Reliability. SIAM, Philadelphia (1996)MATHCrossRefGoogle Scholar
  20. 77.
    Bartoszewicz, J., Skolimowska, M.: Preservation of classes of life distributions and stochastic orders under weighting. Stat. Probab. Lett. 76, 587–596 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 79.
    Basu, A.P., Bhattacharjee, M.C.: On weak convergence within HNBUE family of life distributions. J. Appl. Probab. 21, 654–660 (1984)MathSciNetMATHCrossRefGoogle Scholar
  22. 80.
    Basu, A.P., Ebrahimi, N.: On the k-th order harmonic new better than used in expectation distributions. Ann. Inst. Stat. Math. 36, 87–100 (1984)MathSciNetMATHCrossRefGoogle Scholar
  23. 87.
    Belzunce, F., Orlege, E., Ruiz, J.M.: A note on replacement policy comparisons from NBUC lifetime of the unit. Stat. Paper. 46, 509–522 (2005)MATHCrossRefGoogle Scholar
  24. 97.
    Bhattacharjee, A., Sengupta, D.: On the coefficient of variations of the \(\mathcal{L}\) and \(\bar{\mathcal{L}}\) classes. Stat. Probab. Lett. 27, 177–180 (1996)MathSciNetMATHCrossRefGoogle Scholar
  25. 98.
    Bhattacharjee, M.C., Kandar, R.: Simple bounds on availability in a model with unknown life and repair distributions. J. Stat. Plann. Infer. 8, 129–142 (1983)MathSciNetMATHCrossRefGoogle Scholar
  26. 102.
    Birnbaum, Z.W., Esary, J.D., Marshall, A.W.: A stochastic characterization of wear out for components and systems. Ann. Math. Stat. 37, 816–825 (1966)MathSciNetMATHCrossRefGoogle Scholar
  27. 103.
    Birnbaum, Z.W., Esary, J.D., Saunders, S.C.: Multicomponent systems and structures and their reliability. Technometrics 12, 55–57 (1961)MathSciNetCrossRefGoogle Scholar
  28. 107.
    Blazej, P.: Preservation of classes of life distributions under weighting with a general weighting function. Stat. Probab. Lett. 78, 3056–3061 (2008)MathSciNetMATHCrossRefGoogle Scholar
  29. 111.
    Block, H.W., Savits, T.H., Singh, H.: The reversed hazard rate function. Probab. Eng. Inform. Sci. 12, 69–90 (1998)MathSciNetMATHCrossRefGoogle Scholar
  30. 116.
    Bon, J., Illayk, A.: A note on some new renewal ageing notions. Stat. Probab. Lett. 57, 151–155 (2002)MathSciNetMATHCrossRefGoogle Scholar
  31. 119.
    Boyan, C.: Renewal and non homogeneous Poisson process generated by distribution with periodic failure rates. Stat. Probab. Lett. 17, 19–25 (1993)MATHCrossRefGoogle Scholar
  32. 122.
    Bryson, M.C., Siddiqui, M.M.: Some criteria for aging. J. Am. Stat. Assoc. 64, 1472–1483 (1969)MathSciNetCrossRefGoogle Scholar
  33. 124.
    Cai, J., Wu, Y.: A note on preservation of NBUC class under the formation of parallel system with dissimilar components. Microelectron. Reliab. 37, 359–360 (1997)CrossRefGoogle Scholar
  34. 127.
    Cao, J., Wang, Y.: The NBUC and NWUC classes of life distributions. J. Appl. Probab. 28, 473–479 (1991)MathSciNetMATHCrossRefGoogle Scholar
  35. 130.
    Castillo, X., Sieworek, D.P.: Workload, performance, and reliability of digital computing systems. Proc. FTCS 11, 84–89 (1981)Google Scholar
  36. 138.
    Chaudhury, G.: Coefficient of variation of \(\mathcal{L}\)-class of life distributions. Comm. Stat. Theor. Meth. 22, 331–344 (1993)CrossRefGoogle Scholar
  37. 139.
    Chaudhury, G.: A note on the \(\mathcal{L}\)-class of life distributions. Sankhyā Ser. A 57, 158–160 (1995)Google Scholar
  38. 144.
    Cheng, K., Lam, Y.: Reliability bounds on HNUBUE life distributions with known first two moments. Eur. J. Oper. Res. 132, 163–175 (2001)MathSciNetMATHCrossRefGoogle Scholar
  39. 148.
    Chukova, S., Dimitrov, B.: On distributions having the almost lack of memory property. J. Appl. Probab. 29, 691–698 (1992)MathSciNetMATHCrossRefGoogle Scholar
  40. 149.
    Chukova, S., Dimitrov, B., Khalil, Z.: A class of probability distributions similar to the exponential. Can. J. Stat. 21, 260–276 (1993)MathSciNetCrossRefGoogle Scholar
  41. 157.
    Cox, D.R.: Renewal Theory. Methuen & Co., London (1962)MATHGoogle Scholar
  42. 160.
    Csorgo, M., Csorgo, S.: Estimation of percentile residual life. Oper. Res. 35, 598–606 (1987)MathSciNetCrossRefGoogle Scholar
  43. 172.
    Deshpande, J.V., Kochar, S.C., Singh, H.: Aspects of positive aging. J. Appl. Probab. 23, 748–758 (1986)MathSciNetMATHCrossRefGoogle Scholar
  44. 179.
    Dimitrov, B., Khalil, Z., El-Saidi, M.A.: On probability distribution with accumulation of failure rates in periodic random environment. Environmetrics 7, 17–26 (1998)CrossRefGoogle Scholar
  45. 185.
    El-Bassiouny, A.H., Sarhan, A.H., Al-Garian, M.: Testing exponentiality against NBUFR (NWUFR). Appl. Math. Comput. 149, 351–358 (2004)MathSciNetMATHCrossRefGoogle Scholar
  46. 186.
    Elabatal, I.: Some ageing classes of life distributions at specific age. Int. Math. Forum 2, 1445–1456 (2007)MathSciNetGoogle Scholar
  47. 189.
    Esary, J.D., Marshall, A.W., Proschan, F.: Shock models and wear process. Ann. Probab. 1, 627–649 (1973)MathSciNetMATHCrossRefGoogle Scholar
  48. 191.
    Fagiouli, E., Pellerey, F.: New partial orderings and applications. Nav. Res. Logist. 40, 829–842 (1993)CrossRefGoogle Scholar
  49. 203.
    Freimer, M., Mudholkar, G.S., Kollia, G., Lin, C.T.: A study of the generalised Tukey lambda family. Comm. Stat. Theor. Meth. 17, 3547–3567 (1988)MathSciNetMATHCrossRefGoogle Scholar
  50. 220.
    Glaser, R.E.: Bathtub related failure rate characterizations. J. Am. Stat. Assoc. 75, 667–672 (1980)MathSciNetMATHCrossRefGoogle Scholar
  51. 222.
    Gohout, W., Kunhert, I.: NBUFR closure under formation of coherent systems. Stat. Paper. 38, 243–248 (1997)MATHCrossRefGoogle Scholar
  52. 233.
    Gupta, R.C.: On the characterization of survival distributions in reliability by properties of their renewal densities. Comm. Stat. Theor. Meth. 8, 685–697 (1979)CrossRefGoogle Scholar
  53. 234.
    Gupta, R.C.: On the monotonic properties of residual variance and their applications in reliability. J. Stat. Plann. Infer. 16, 329–335 (1987)MATHCrossRefGoogle Scholar
  54. 236.
    Gupta, R.C.: Role of equilibrium in reliability studies. Probab. Eng. Inform. Sci. 21, 315–334 (2007)MATHCrossRefGoogle Scholar
  55. 242.
    Gupta, R.C., Kirmani, S.N.U.A.: The role of weighted distributions in stochastic modelling. Comm. Stat. Theor. Meth. 19, 3147–3162 (1990)MathSciNetMATHCrossRefGoogle Scholar
  56. 244.
    Gupta, R.C., Kirmani, S.N.U.A.: Moments of residual life and some characterizations. J. Appl. Stat. Sci. 13, 155–167 (2004)MathSciNetMATHGoogle Scholar
  57. 246.
    Gupta, R.C., Kirmani, S.N.U.A., Launer, R.L.: On life distributions having monotone residual variance. Probab. Eng. Inform. Sci. 1, 299–307 (1987)MATHCrossRefGoogle Scholar
  58. 249.
    Gupta, R.C., Warren, R.: Determination of change points of non-monotonic failure rates. Comm. Stat. Theor. Meth. 30, 1903–1920 (2001)MathSciNetMATHCrossRefGoogle Scholar
  59. 258.
    Haines, A.L., Singpurwalla, N.D.: Some contributions to the stochastic characterization of wear. In: Proschan, F., Serfling, R.J. (eds.) Reliability and Biometry: Statistical Analysis of Lifelength, pp. 47–80. Society for Industrial and Applied Mathematics, Philadelphia (1974)Google Scholar
  60. 268.
    Hendi, M.I.: On decreasing cumulative conditional class of life distributions. Pakistan J. Stat. 7, 71–79 (1991)MathSciNetMATHGoogle Scholar
  61. 269.
    Hendi, M.I., Mashhour, A.F., Montasser, M.A.: Closure of NBUC class under the formation of parallel system. J. Appl. Probab. 30, 975–978 (1993)MathSciNetMATHCrossRefGoogle Scholar
  62. 274.
    Hollander, M., Park, D.H., Proschan, F.: Testing whether new is better than used of specific age with randomly censored data. Can. J. Stat. 13, 45–52 (1985)MathSciNetMATHCrossRefGoogle Scholar
  63. 275.
    Honfeng, Z., Yi, W.W.: The NBEFR and NWEFR classes of distributions. Microelectron. Reliab. 37, 919–922 (1997)CrossRefGoogle Scholar
  64. 287.
    Hu, T., Xie, H.: Proofs of closure properties of NBUC and NBU(2) under convolution. J. Appl. Probab. 39, 224–227 (2002)MathSciNetMATHCrossRefGoogle Scholar
  65. 290.
    Jain, K., Singh, H., Bagai, I.: Relation for reliability measures for weighted distributions. Comm. Stat. Theor. Meth. 18, 4393–4412 (1989)MathSciNetMATHCrossRefGoogle Scholar
  66. 292.
    Jiang, R., Ji, P., Xiao, X.: Ageing property of univariate failure rate models. Reliab. Eng. Syst. Saf. 79, 113–116 (2003)CrossRefGoogle Scholar
  67. 301.
    Joe, H., Proschan, F.: Percentile residual life functions. Oper. Res. 32, 668–678 (1984)MathSciNetMATHCrossRefGoogle Scholar
  68. 310.
    Kao, J.H.K.: A graphical estimation of mixed Weibull parameters in life testing of electronic tubes. Technometrics 10, 389–407 (1959)CrossRefGoogle Scholar
  69. 318.
    Kayid, M.: A general family of NBU class of life distributions. Stat. Meth. 4, 1895–1905 (2007)MathSciNetGoogle Scholar
  70. 330.
    Klar, B.: A note on \(\mathcal{L}\)-class of distributions. J. Appl. Probab. 39, 11–19 (2002)MathSciNetMATHCrossRefGoogle Scholar
  71. 331.
    Klar, B., Muller, A.: Characterization of classes of life distribution generalizing the NBUE class. J. Appl. Probab. 40, 20–32 (2003)MathSciNetMATHCrossRefGoogle Scholar
  72. 332.
    Klefsjö, B.: The HNBUE and HNWUE classes of life distributions. Nav. Res. Logist. Q. 29, 331–344 (1982)MATHCrossRefGoogle Scholar
  73. 334.
    Klefsjö, B.: On ageing properties and total time on test transforms. Scand. J. Stat. 9, 37–41 (1982)MATHGoogle Scholar
  74. 337.
    Klefsjö, B.: A useful ageing property based on Laplace transforms. J. Appl. Probab. 20, 615–626 (1983)MathSciNetMATHCrossRefGoogle Scholar
  75. 343.
    Klutke, G., Kiessler, C., Wortman, M.A.: A critical look at the bathtub curve. IEEE Trans. Reliab. 52, 125–129 (2003)CrossRefGoogle Scholar
  76. 344.
    Knopik, L.: Some results on ageing class. Contr. Cybern. 34, 1175–1180 (2005)MathSciNetMATHGoogle Scholar
  77. 345.
    Knopik, L.: Characterization of a class of lifetime distributions. Contr. Cybern. 35, 407–414 (2006)MathSciNetMATHGoogle Scholar
  78. 353.
    Kotlyar, V.Y.: A class of ageing distributions. Cybern. Syst. Anal. 28, 170–176 (1992)MathSciNetMATHCrossRefGoogle Scholar
  79. 354.
    Kottas, A., Gelfand, A.E.: Bayesian semiparametric median regression modelling. J. Am. Stat. Assoc. 96, 1458–1468 (2001)MathSciNetMATHCrossRefGoogle Scholar
  80. 356.
    Kulasekera, K.B., Park, H.D.: The class of better mean residual life at age t 0. Microelectron. Reliab. 27, 725–735 (1987)CrossRefGoogle Scholar
  81. 363.
    Kupka, J., Loo, S.: The hazard and vitality measures of ageing. J. Appl. Probab. 26, 532–542 (1989)MathSciNetMATHCrossRefGoogle Scholar
  82. 368.
    Lai, C.D., Xie, M.: Stochastic Ageing and Dependence for Reliability. Springer, New York (2006)MATHGoogle Scholar
  83. 374.
    Lariviere, M.A.: A note on probability distributions with generalized failure rates. Oper. Res. 54, 602–605 (2006)MathSciNetMATHCrossRefGoogle Scholar
  84. 375.
    Lariviere, M.A., Porteus, E.L.: Setting to a news vendor: An analysis of price-only contracts. Manuf. Serv. Oper. Manag. 3, 293–305 (2001)CrossRefGoogle Scholar
  85. 377.
    Launer, R.L.: Inequalities for NBUE and NWUE life distributions. Oper. Res. 32, 660–667 (1984)MathSciNetMATHCrossRefGoogle Scholar
  86. 389.
    Li, X., Kochar, S.C.: Some new results involving the NBU(2) class of life distributions. J. Appl. Probab. 35, 242–247 (2001)MathSciNetGoogle Scholar
  87. 390.
    Li, X., Li, Z., Jing, B.: Some results about NBUC class of life distributions. Stat. Probab. Lett. 61, 235–236 (2003)MathSciNetCrossRefGoogle Scholar
  88. 391.
    Li, X., Qiu, G.: Some preservation results of NBUC ageing properties with applications. Stat. Paper. 48, 581–594 (2007)MathSciNetMATHCrossRefGoogle Scholar
  89. 393.
    Li, X., Xu, M.: Reversed hazard rate order of equilibrium distributions and a related ageing notion. Stat. Paper. 49, 749–767 (2007)CrossRefGoogle Scholar
  90. 394.
    Li, X., Yam, R.C.M.: Reversed properties of some negative ageing properties with application. Stat. Paper. 46, 65–68 (2005)MathSciNetMATHCrossRefGoogle Scholar
  91. 396.
    Li, Y.: Closure of NBU(2) class under formation of parallel system. Stat. Probab. Lett. 67, 57–63 (2004)MATHCrossRefGoogle Scholar
  92. 397.
    Li, Y.: Preservation of NBUC and NBU(2) classes under mixtures. Probab. Eng. Inform. Sci. 19, 277–298 (2005)MATHCrossRefGoogle Scholar
  93. 398.
    Li, Z., Li, X.: {IFR ∗ t 0} and {NBU ∗ t 0} classes of life distributions. J. Stat. Plann. Infer. 70, 191–200 (1998)Google Scholar
  94. 399.
    Lillo, R.E.: On the median residual lifetime and its aging properties: A characterization theorem and applications. Nav. Res. Logist. 52, 370–380 (2005)MathSciNetMATHCrossRefGoogle Scholar
  95. 400.
    Lin, G.D.: Characterization of the \(\mathcal{L}\)-class of life distributions. Stat. Probab. Lett. 40, 259–266 (1998)MATHCrossRefGoogle Scholar
  96. 403.
    Lin, G.D., Hu, C.: A note on the \(\mathcal{L}\)-class of life distributions. Sankhyā Ser. A 62, 267–272 (2000)MathSciNetMATHGoogle Scholar
  97. 404.
    Loh, W.Y.: A new generalization of the class of NBU distributions. IEEE Trans. Reliab. 33, 419–422 (1984)MATHCrossRefGoogle Scholar
  98. 412.
    Marshall, A.W., Olkin, I.: Life Distributions. Springer, New York (2007)MATHGoogle Scholar
  99. 413.
    Marshall, A.W., Proschan, F.: Classes of distributions applicable in replacement with renewal theory implications. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, pp. 395–415. California Press, Berkeley (1972)Google Scholar
  100. 417.
    Misra, N., Gupta, N., Dhariyal, I.D.: Preservation of some ageing properties and stochastic orders by weighted distributions. Comm. Stat. Theor. Meth. 37, 627–644 (2008)MathSciNetMATHCrossRefGoogle Scholar
  101. 441.
    Nair, N.U., Preeth, M.: On some properties of equilibrium distributions of order n. Stat. Meth. Appl. 18, 453–464 (2009)Google Scholar
  102. 445.
    Nair, N.U., Sankaran, P.G.: Properties of a mean residual life arising from renewal theory. Nav. Res. Logist. 57, 373–379 (2010)MathSciNetMATHGoogle Scholar
  103. 454.
    Nair, N.U., Vineshkumar, B.: Ageing concepts: An approach based on quantile functions. Stat. Probab. Lett. 81, 2016–2025 (2011)MATHCrossRefGoogle Scholar
  104. 457.
    Nanda, A.K.: Generalized ageing classes in terms of Laplace transforms. Sankhyā 62, 258–266 (2000)MathSciNetMATHGoogle Scholar
  105. 460.
    Nanda, A.K., Jain, K., Singh, H.: On closure of some partial orderings under mixtures. J. Appl. Probab. 33, 698–706 (1996)MathSciNetMATHCrossRefGoogle Scholar
  106. 462.
    Nanda, A.K., Singh, H., Misra, N., Paul, P.: Reliability properties of reversed residual life time. Comm. Stat. Theor. Meth. 32, 2031–2042 (2003)MathSciNetMATHCrossRefGoogle Scholar
  107. 473.
    Oluyede, B.: Some inequalities and bounds for weighted reliability measures. J. Inequal. Pure Appl. Math. 3 (2002). Article 60Google Scholar
  108. 483.
    Park, D.H.: Class of NBU-t 0 life distributions. In: Pham, H. (ed.) Handbook of Reliability Engineering. Springer, New York (2003)Google Scholar
  109. 484.
    Parzen, E.: Nonparametric statistical data modelling. J. Am. Stat. Assoc. 74, 105–122 (1979)MathSciNetMATHCrossRefGoogle Scholar
  110. 496.
    Prakasa Rao, B.L.S.: On distributions with periodic failure rate and related inference problems. In: Panchapakesan, S., Balakrishanan, N. (eds.) Advances in Statistical Theory and Applications. Birkhauser, Boston (1997)Google Scholar
  111. 506.
    Rao, C.R., Shanbhag, D.N.: Choquet-Deny Type Functional Equations with Applications to Stochastic Models. Wiley, Chichester (1994)MATHGoogle Scholar
  112. 512.
    Rolski, T.: Mean residual life. Bull. Int. Stat. Inst. 46, 266–270 (1975)MathSciNetGoogle Scholar
  113. 513.
    Samaniego, F.J.: System Signatures and Their Applications in Engineering Reliability. Springer, New York (2007)MATHCrossRefGoogle Scholar
  114. 514.
    Samaniego, F.J., Balakrishnan, N., Navarro, J.: Dynamic signatures and their use in comparing the reliability of new and used systems. Nav. Res. Logist. 56, 577–591 (2009)MathSciNetMATHCrossRefGoogle Scholar
  115. 526.
    Sengupta, D., Deshpande, J.V.: Some results on the relative ageing of two life distributions. J. Appl. Probab. 31, 991–1003 (1994)MathSciNetMATHCrossRefGoogle Scholar
  116. 530.
    Shaked, M.: Exponential life functions with NBU components. Ann. Probab. 11, 752–759 (1983)MathSciNetMATHCrossRefGoogle Scholar
  117. 542.
    Singh, H., Deshpande, J.V.: On some new ageing properties. Scand. J. Stat. 12, 213–220 (1985)MathSciNetMATHGoogle Scholar
  118. 546.
    Stein, W.E., Dattero, R.: Bondesson’s functions in reliability theory. Appl. Stoch. Model. Bus. Ind. 15, 103–109 (1999)MathSciNetMATHCrossRefGoogle Scholar
  119. 548.
    Stoyanov, J., Al-sadi, M.H.M.: Properties of a class of distributions based on conditional variance. J. Appl. Probab. 41, 953–960 (2004)MathSciNetMATHCrossRefGoogle Scholar
  120. 558.
    Tabot, J.P.P.: The bathtub myth. Qual. Assur. 3, 107–108 (1997)Google Scholar
  121. 561.
    Tanguy, C.: Mean time to failure for periodic failure rate. R&RATA 2 (2009)Google Scholar
  122. 581.
    Willmot, G.E., Cai, J.: On classes of life distributions with unknown age. Probab. Eng. Inform. Sci. 14, 473–484 (2000)MathSciNetMATHCrossRefGoogle Scholar
  123. 583.
    Willmot, G.E., Lin, X.S.: Lindberg approximations for compound distributions with applications. Lecture Notes in Statistics, vol. 156. Springer, New York (2001)Google Scholar
  124. 586.
    Wong, K.L.: Unified (field) failure theory—demise of the bathtub curve. In: Proceedings of the Annual Reliability and Maintainability Symposium, Philadelphia, PA, pp. 402–407 (1981)Google Scholar
  125. 587.
    Wong, K.L.: The bathtub does not hold water any more. Qual. Reliab. Eng. Int. 4, 279–282 (1988)CrossRefGoogle Scholar
  126. 589.
    Wong, K.L.: The physical basin for the roller-coaster hazard rate curve for electronics. Qual. Reliab. Eng. Int. 7, 489–495 (1991)CrossRefGoogle Scholar
  127. 598.
    Yue, D., Cao, J.: The NBUL class of life distributions and replacement policy comparisons. Nav. Res. Logist. 48, 578–591 (2001)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. Unnikrishnan Nair
    • 1
  • P. G. Sankaran
    • 1
  • N. Balakrishnan
    • 2
  1. 1.Department of StatisticsCochin University of Science and TechnologyCochinIndia
  2. 2.Department of Mathematics and StatisticsMcMasters UniversityHamiltonCanada

Personalised recommendations