# Quantile Functions

• N. Unnikrishnan Nair
• P. G. Sankaran
• N. Balakrishnan
Chapter
Part of the Statistics for Industry and Technology book series (SIT)

## Abstract

A probability distribution can be specified either in terms of the distribution function or by the quantile function. This chapter addresses the problem of describing the various characteristics of a distribution through its quantile function. We give a brief summary of the important milestones in the development of this area of research. The definition and properties of the quantile function with examples are presented. In Table 1.1, quantile functions of various life distributions, representing different data situations, are included. Descriptive measures of the distributions such as location, dispersion and skewness are traditionally expressed in terms of the moments. The limitations of such measures are pointed out and some alternative quantile-based measures are discussed. Order statistics play an important role in statistical analysis. Distributions of order statistics in quantile forms, their properties and role in reliability analysis form the next topic in the chapter. There are many problems associated with the use of conventional moments in modelling and analysis. Exploring these, and as an alternative, the definition, properties and application of L-moments in describing a distribution are presented. Finally, the role of certain graphical representations like the Q-Q plot, box-plot and leaf-plot are shown to be useful tools for a preliminary analysis of the data.

## Keywords

Order Statistic Residual Life Quantile Function Life Testing Experiment Pitman Closeness
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 15.
Abromowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: Formulas, Graphs and Mathematical Tables. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington, DC (1964)Google Scholar
2. 18.
Adamidis, K., Loukas, S.: A lifetime distribution with decreasing failure rate. Stat. Probab. Lett. 39, 35–42 (1998)
3. 37.
Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. Wiley, New York (1992)
4. 41.
Avinadav, T., Raz, T.: A new inverted hazard rate function. IEEE Trans. Reliab. 57, 32–40 (2008)
5. 47.
Balakrishnan, N.: Order statistics from the half logistic distribution. J. Stat. Comput. Simulat. 20, 287–309 (1985)
6. 48.
Balakrishnan, N. (ed.): Handbook of the Logistic Distribution. Marcel Dekker, New York (1992)
7. 49.
Balakrishnan, N., Aggarwala, R.: Relationships for moments of order statistics from the right-truncated generalized half logistic distribution. Ann. Inst. Stat. Math. 48, 519–534 (1996)
8. 51.
Balakrishnan, N., Cohen, A.C.: Order Statistics and Inference: Estimation Methods. Academic, Boston (1991)
9. 52.
Balakrishnan, N., Davies, K., Keating, J.P., Mason, R.L.: Computation of optimal plotting points based on Pitman closeness with an application to goodness-of-fit for location-scale families. Comput. Stat. Data Anal. 56, 2637–2649 (2012)
10. 53.
Balakrishnan, N., Kundu, D.: Hybrid censoring: Models, inferential results and applications (with discussions). Comput. Stat. Data Anal. 57, 166–209 (2013)
11. 56.
Balakrishnan, N., Rao, C.R.: Order Statistics: Theory and Methods. Handbook of Statistics, vol. 16. North-Holland, Amsterdam (1998)Google Scholar
12. 57.
Balakrishnan, N., Rao, C.R.: Order Statistics - Applications. Handbook of Statistics, vol. 17. North-Holland, Amsterdam (1998)Google Scholar
13. 59.
Balakrishnan, N., Sandhu, R.: Recurrence relations for single and product moments of order statistics from a generalized half logistic distribution, with applications to inference. J. Stat. Comput. Simulat. 52, 385–398 (1995)
14. 61.
Balakrishnan, N., Wong, K.H.T.: Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right-censoring. IEEE Trans. Reliab. 40, 140–145 (1991)
15. 63.
Balanda, K.P., MacGillivray, H.L.: Kurtosis: a critical review. Am. Stat. 42, 111–119 (1988)Google Scholar
16. 140.
Chen, G., Balakrishnan, N.: The infeasibility of probability weighted moments estimation of some generalized distributions. In: Balakrishnan, N. (ed.) Recent Advances in Life-Testing and Reliability, pp. 565–573. CRC Press, Boca Raton (1995)Google Scholar
17. 154.
Cohen, A.C.: Truncated and Censored Samples: Theory and Applications. Marcel Dekker, New York (1991)
18. 178.
Dimitrakopoulou, T., Adamidis, K., Loukas, S.: A life distribution with an upside down bathtub-shaped hazard function. IEEE Trans. Reliab. 56, 308–311 (2007)
19. 187.
Elamir, E.A.H., Seheult, A.H.: Trimmed L-moments. Comput. Stat. Data Anal. 43, 299–314 (2003)
20. 188.
Erto, P.: Genesis, properties and identification of the inverse Weibull lifetime model. Statistica Applicato 1, 117–128 (1989)Google Scholar
21. 194.
Falk, M.: On MAD and comedians. Ann. Inst. Stat. Math. 45, 615–644 (1997)
22. 197.
Filliben, J.J.: Simple and robust linear estimation of the location parameter of a symmetric distribution. Ph.D. thesis, Princeton University, Princeton (1969)Google Scholar
23. 203.
Freimer, M., Mudholkar, G.S., Kollia, G., Lin, C.T.: A study of the generalised Tukey lambda family. Comm. Stat. Theor. Meth. 17, 3547–3567 (1988)
24. 204.
Fry, T.R.L.: Univariate and multivariate Burr distributions. Pakistan J. Stat. 9, 1–24 (1993)
25. 206.
Galton, F.: Statistics by inter-comparison with remarks on the law of frequency error. Phil. Mag. 49, 33–46 (1875)Google Scholar
26. 207.
Galton, F.: Enquiries into Human Faculty and Its Development. MacMillan, London (1883)
27. 208.
Galton, F.: Natural Inheritance. MacMillan, London (1889)
28. 215.
Gilchrist, W.G.: Statistical Modelling with Quantile Functions. Chapman and Hall/CRC Press, Boca Raton (2000)
29. 225.
Greenwich, M.: A unimodal hazard rate function and its failure distribution. Statistische Hefte 33, 187–202 (1992)
30. 226.
Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, J.R.: Probability weighted moments. Water Resour. Res. 15, 1049–1054 (1979)
31. 227.
Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. The Statistician 33, 391–393 (1984)
32. 237.
Gupta, R.C., Akman, H.O., Lvin, S.: A study of log-logistic model in survival analysis. Biometrical J. 41, 431–433 (1999)
33. 239.
Gupta, R.C., Gupta, P.L., Gupta, R.D.: Modelling failure time data with Lehmann alternative. Comm. Stat. Theor. Meth. 27, 887–904 (1998)
34. 240.
Gupta, R.C., Gupta, R.D.: Proportional reversed hazards model and its applications. J. Stat. Plann. Infer. 137, 3525–3536 (2007)
35. 250.
Gupta, R.D., Kundu, D.: Generalized exponential distribution. Aust. New Zeal. J. Stat. 41, 173–178 (1999)
36. 257.
Hahn, G.J., Shapiro, S.S.: Statistical Models in Engineering. Wiley, New York (1967)Google Scholar
37. 264.
Hastings, C., Mosteller, F., Tukey, J.W., Winsor, C.P.: Low moments for small samples: A comparative study of statistics. Ann. Math. Stat. 18, 413–426 (1947)
38. 271.
Hinkley, D.V.: On power transformations to symmetry. Biometrika 62, 101–111 (1975)
39. 273.
Hogben, D.: Some properties of Tukey’s test for non-additivity. Ph.D. thesis, The State University of New Jersey, New Jersey (1963)Google Scholar
40. 276.
Hosking, J.R.M.: L-moments: analysis and estimation of distribution using linear combination of order statistics. J. Roy. Stat. Soc. B 52, 105–124 (1990)
41. 277.
Hosking, J.R.M.: Moments or L-moments? An example comparing two measures of distributional shape. The Am. Stat. 46, 186–189 (1992)Google Scholar
42. 279.
Hosking, J.R.M.: Some theoretical results concerning L-moments. Research Report, RC 14492. IBM Research Division, Yorktown Heights, New York (1996)Google Scholar
43. 280.
Hosking, J.R.M.: On the characterization of distributions by their L-moments. J. Stat. Plann. Infer. 136, 193–198 (2006)
44. 281.
Hosking, J.R.M.: Some theory and practical uses of trimmed L-moments. J. Stat. Plann. Infer. 137, 3024–3029 (2007)
45. 282.
Hosking, J.R.M., Wallis, J.R.: Regional Frequency Analysis: An Approach based on L-Moments. Cambridge University Press, Cambridge (1997)
46. 299.
Joannes, D.L., Gill, C.A.: Comparing measures of sample skewness and kurtosis. The Statistician 47, 183–189 (1998)Google Scholar
47. 302.
Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2, 2nd edn. Wiley, New York (1995)Google Scholar
48. 304.
Joiner, B.L., Rosenblatt, J.R.: Some properties of the range of samples from Tukey’s symmetric lambda distribution. J. Am. Stat. Assoc. 66, 394–399 (1971)
49. 306.
Jones, M.C.: On some expressions for variance, covariance, skewness and L-moments. J. Stat. Plann. Infer. 126, 97–108 (2004)
50. 322.
Kececioglu, D.B.: Reliability and Lifetesting Handbook, vol. 1. DEStech Publications, Lancaster (2002)Google Scholar
51. 355.
Kotz, S., Seier, E.: An analysis of quantile measures of kurtosis, center and tails. Stat. Paper. 50, 553–568 (2009)
52. 364.
Kus, C.: A new lifetime distribution. Comput. Stat. Data Anal. 51, 4497–4509 (2007)
53. 368.
Lai, C.D., Xie, M.: Stochastic Ageing and Dependence for Reliability. Springer, New York (2006)
54. 372.
Lan, Y., Leemis, L.M.: Logistic exponential survival function. Nav. Res. Logist. 55, 252–264 (2008)
55. 382.
Lehmann, E.L.: The power of rank tests. Ann. Math. Stat. 24, 23–42 (1953)
56. 407.
MacGillivray, H.L.: Skewness properties of asymmetric forms of Tukey-lambda distribution. Comm. Stat. Theor. Meth. 11, 2239–2248 (1982)
57. 411.
Marshall, A.W., Olkin, I.: A new method of adding a parameter to a family of distributions with application to exponential and Weibull families. Biometrika 84, 641–652 (1997)
58. 412.
Marshall, A.W., Olkin, I.: Life Distributions. Springer, New York (2007)
59. 421.
Moors, J.J.A.: A quantile alternative for kurtosis. The Statistician 37, 25–32 (1988)
60. 424.
Mudholkar, G.S., Hutson, A.D.: Analogues of L-moments. J. Stat. Plann. Infer. 71, 191–208 (1998)
61. 426.
Mudholkar, G.S., Kollia, G.D.: Generalized Weibull family–a structural analysis. Comm. Stat. Theor. Meth. 23, 1149–1171 (1994)
62. 427.
Mudholkar, G.S., Srivastava, D.K., Freimer, M.: The exponentiated Weibull family: A reanalysis of bus motor failure data. Technometrics 37, 436–445 (1995)
63. 429.
Mudholkar, G.S., Srivastava, D.K.: Exponentiated Weibull family for analysing bathtub failure data. IEEE Trans. Reliab. 42, 299–302 (1993)
64. 434.
Murthy, D.N.P., Xie, M., Jiang, R.: Weibull Models. Wiley, Hoboken (2003)
65. 482.
Paranjpe, S.A., Rajarshi, M.B., Gore, A.P.: On a model for failure rates. Biometrical J. 27, 913–917 (1985)
66. 484.
Parzen, E.: Nonparametric statistical data modelling. J. Am. Stat. Assoc. 74, 105–122 (1979)
67. 485.
Parzen, E.: Unifications of statistical methods for continuous and discrete data. In: Page, C., Lepage, R. (eds.) Proceedings of Computer Science-Statistics. INTERFACE 1990, pp. 235–242. Springer, New York (1991)Google Scholar
68. 487.
Parzen, E.: Quality probability and statistical data modelling. Stat. Sci. 19, 652–662 (2004)
69. 489.
Pearson, K.: Tables of Incomplete Beta Function, 2nd edn. Cambridge University Press, Cambridge (1968)
70. 499.
Quetelet, L.A.J.: Letters Addressed to HRH the Grand Duke of Saxe Coburg and Gotha in the Theory of Probability. Charles and Edwin Laton, London (1846). Translated by Olinthus Gregory DownsGoogle Scholar
71. 501.
Ramberg, J.S.: A probability distribution with applications to Monte Carlo simulation studies. In: Patil, G.P., Kotz, S., Ord, J.K. (eds.) Model Building and Model Selection. Statistical Distributions in Scientific Work, vol. 2. D. Reidel, Dordrecht (1975)Google Scholar
72. 502.
Ramberg, J.S., Dudewicz, E., Tadikamalla, P., Mykytka, E.: A probability distribution and its uses in fitting data. Technometrics 21, 210–214 (1979)
73. 504.
Ramberg, J.S., Schmeiser, B.W.: An approximate method for generating asymmetric random variables. Comm. Assoc. Comput. Mach. 17, 78–82 (1974)
74. 509.
Rohatgi, V.K., Saleh, A.K.Md.E.: A class of distributions connected to order statistics with nonintegral sample size. Comm. Stat. Theor. Meth. 17, 2005–2012 (1988)Google Scholar
75. 517.
Sankarasubramonian, A., Sreenivasan, K.: Investigation and comparison of L-moments and conventional moments. J. Hydrol. 218, 13–34 (1999)
76. 536.
Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality. Biometrika 52, 591–611 (1965)
77. 537.
Sillitto, G.P.: Derivation of approximants to the inverse distribution function of a continuous univariate population from the order statistics of a sample. Biometrika 56, 641–650 (1969)
78. 547.
Stigler, S.M.: Fractional order statistics with applications. J. Am. Stat. Assoc. 72, 544–550 (1977)
79. 552.
Suleswki, P.: On differently defined skewness. Comput. Meth. Sci. Technol. 14, 39–46 (2008)Google Scholar
80. 559.
Tajuddin, I.H.: A simple measure of skewness. Stat. Neerl. 50, 362–366 (1996)
81. 563.
Tarsitano, A.: Estimation of the generalised lambda distributions parameter for grouped data. Comm. Stat. Theor. Meth. 34, 1689–1709 (2005)
82. 568.
Tukey, J.W.: The future of data analysis. Ann. Math. Stat. 33, 1–67 (1962)
83. 569.
84. 574.
Vogel, R.M., Fennessey, N.M.: L-moment diagrams should replace product moment diagrams. Water Resour. Res. 29, 1745–1752 (1993)
85. 595.
Xie, M., Tang, Y., Goh, T.N.: A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 76, 279–285 (2002)
86. 596.
Yitzhaki, S.: Gini’s mean difference: A superior measure of variability for nonnormal distributions. Metron 61, 285–316 (2003)
87. 604.
Zimmer, W., Keats, J.B., Wang, F.K.: The Burr XII distribution in reliability analysis. J. Qual. Technol. 20, 386–394 (1998)Google Scholar