Advertisement

Practical Designs of VLSI Analog Filters

  • P. V. Ananda Mohan
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter presents state-of-the-art designs described in literature in the past decade for various VLSI and SOC implementations of complete systems in which filters play a part. An introductory section presents characteristics of integrated resistors and capacitors and design considerations. Interesting designs using active RC or SC or OTA-C or LC filters with important desirable features such as frequency tuning configurations, programmability, operation at low power supply voltages, high-frequency operation, and good dynamic range are described. These are described by grouping them based on the intended applications such as wireless receivers, ADSL, power supply applications, software radio, and hard disk drives. Figures of merit for comparing the performance of various integrated filters are presented. Representative performance figures of some contemporary designs are presented for benchmarking them with new designs.

Keywords

Differential Pair Common Mode Voltage Variable Gain Amplifier Capacitor Array Resistance Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [5.1]
    Durham, A.M., Hughes, J.B., Redman-White, W.: Circuit architectures for high linearity monolithic continuous time filtering. IEEE Trans. Circuit Syst. Part II CAS-39, 651–657 (1992)CrossRefGoogle Scholar
  2. [5.2]
    Durham, A.M., Redman-White, W., Hughes, J.B.: High-linearity continuous time filter in 5-V VLSI CMOS. IEEE J. Solid-State Circuits SC-27, 1270–1276 (1992)CrossRefGoogle Scholar
  3. [5.3]
    Amir-Aslanzadeh, H., Pankratz, E.J., Sanchez-Sinencio, E.: A 1-V +31dBm IIP3 reconfigurable continuously tunable power-adjustable Active-RC LPF. IEEE J. Solid-State Circuits SC-44, 495–508 (2009)CrossRefGoogle Scholar
  4. [5.4]
    Balankutty, A., Yu, S.-A., Feng, Y., Kinget, P.R.: A 0.6V zero-IF/Low-IF receiver with integrated fractional-N synthesizer for 2.4 GHz ISM- band applications. IEEE J. Solid-State Circuits. SC-45, 538–553 (2010)CrossRefGoogle Scholar
  5. [5.5]
    Shih, H.-Y., Kuo, C.-N., Chen, W.-H., Yang, T.-Y., Juang, K.-C.: A 250 MHz 14dB-NF 73 dB- gain 82 dB-DR analog baseband chain with digital assisted DC-offset calibration for ultra-wideband. IEEE J. Solid-State Circuits SC-45, 338–350 (2010)CrossRefGoogle Scholar
  6. [5.6]
    Roberts, G.W., Sedra, A.S.: A general class of current amplifier-based biquadratic filter circuits. IEEE Trans. Circuit Syst. I: Fundam. Theory Appl. SC-39, 257–263 (1992)MATHCrossRefGoogle Scholar
  7. [5.7]
    Vasilopoulos, A., Vizilaios, G., Theodoratos, G., Papananos, Y.: A low-power reconfigurable integrated active-RC filter with 73dB SFDR. IEEE J. Solid-State Circuits SC-41, 1997–2008 (2006)CrossRefGoogle Scholar
  8. [5.8]
    Ghittori, N., Vigna, A., Malcovati, P., Amico, S.D., Baschirotto, A.: 1.2V low-power multi-mode DAC + filter blocks for reconfigurable (WLAN/UMTS, WLAN/Bluetooth) transmitters. IEEE J. Solid-State Circuits SC-41, 1970–1982 (2006)CrossRefGoogle Scholar
  9. [5.9]
    Kousai, S., Hamada, M., Itakura, T.: A 19.7MHz fifth-order Active-RC Chebychev LPF draft IEEE 802.11n with automatic quality factor tuning scheme. IEEE J. Solid-State Circuits SC-42, 2326–2337 (2007)CrossRefGoogle Scholar
  10. [5.10]
    Yoshizawa, A., Tsividis, Y.: A channel select filter with agile blocker detection and adaptive power dissipation. IEEE J. Solid-State Circuits SC-42, 1090–1099 (2007)CrossRefGoogle Scholar
  11. [5.11]
    Hollman, T., Lindfors, S., Lansirinne, M., Jussila, J., Halonen, K.A.I.: A 2.7V dual-mode baseband filter for PDC and WCDMA. IEEE J. Solid-State Circuits SC-36, 1148–1153 (2001)CrossRefGoogle Scholar
  12. [5.12]
    Lin, F., Yu, X., Ranganathan, S., Kwan, T.: A 70 dB MTPR integrated programmable gain/bandwidth fourth-order Chebychev high-pass filter for ADSL/VDSL receivers in 65nm CMOS. IEEE J. Solid-State Circuits SC-44, 1290–1297 (2009)CrossRefGoogle Scholar
  13. [5.13]
    Asymmetric digital subscriber line (ADSL) transceivers – extended bandwidth ADSL2 (ADSL2+) ITU-T recommendation G.992.5 (2005)Google Scholar
  14. [5.14]
    Giannini, V., Craninckx, J., Amico, S.D., Baschirotto, A.: Flexible baseband analog circuits for software-defined radio front-ends. IEEE J. Solid-State Circuits SC-42, 1501–1512 (2007)CrossRefGoogle Scholar
  15. [5.15]
    Tekin, A., Elwan, H., Ismail, A., Pedrotti, K.: Noise-shaping gain-filtering techniques for integrated receivers. IEEE J. Solid-State Circuits SC-44, 2689–2701 (2009)CrossRefGoogle Scholar
  16. [5.16]
    Ozgun, M.T., Tsividis, Y., Burra, G.: Dynamic power optimization of Active Filters with application to zero-IF receivers. IEEE J. Solid-State Circuits SC-41, 1344–1352 (2006)CrossRefGoogle Scholar
  17. [5.17]
    Thyagarajan, S.V., Pavan, S., Sankar, P.: Active RC filters using the Gm-assisted OTA-RC technique. IEEE J. Solid-State Circuits SC-46, 1522–1533 (2011)CrossRefGoogle Scholar
  18. [5.18]
    Behbahani, F., Tan, W., Karimi-Sanjaani, A., Rothmeier, A., Abidi, A.: A broad-band tunable CMOS channel select filter for a low IF wireless receiver. IEEE J. Solid-State Circuits SC-35, 476–489 (2000)CrossRefGoogle Scholar
  19. [5.19]
    Lo, T.Y., Hung, C.C., Ismail, M.: A wide tuning range Gm-C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE J. Solid-State Circuits SC-44, 2515–2524 (2009)CrossRefGoogle Scholar
  20. [5.20]
    Saari, V., Kaltiokallio, M., Lindfors, S., Ryynanen, J., Halonen, K.A.I.: A 240MHz low-pass filter with variable gain in 65-nm CMOS for a UWB receiver. IEEE Trans. Circuit Syst. 56(Part I), 1488–1499 (2009)MathSciNetGoogle Scholar
  21. [5.21]
    Oskooei, M.S., Masoumi, N., Kamaei, M., Sjoland, H.: A CMOS 4.35mW +22dBm IIP3 continuously tunable channel select filter for WLAN/WiMAX receivers. IEEE J. Solid-State Circuits SC-46, 1382–1391 (2011)CrossRefGoogle Scholar
  22. [5.22]
    Amico, S.D., Conta, M., Baschirotto, A.: A 4.1mW fourth-order source-follower-based continuous-time filter with 79 dB DR. IEEE J. Solid-State Circuits SC-41, 2713–2719 (2006)CrossRefGoogle Scholar
  23. [5.23]
    Chamla, D., Kaiser, A., Cathelin, A., Belot, D.: A switchable-order Gm-C bandpass filter with digital tuning for configurable radio receivers. IEEE J. Solid-State Circuits SC-42, 1513–1521 (2007)CrossRefGoogle Scholar
  24. [5.24]
    D’Amico, S., Giannini, V., Baschirotto, A.: A 4th-order Active-Gm-RC reconfigurable (UMTS/WLN) filter. IEEE J. Solid-State Circuits SC-41, 1630–1637 (2006)CrossRefGoogle Scholar
  25. [5.25]
    De Matteis, M., Amico, S.D., Baschirotto, A.: A 0.55V 60 dB–DR fourth-order analog baseband filter. IEEE J. Solid-State Circuits SC-44, 2525–2534 (2009)CrossRefGoogle Scholar
  26. [5.26]
    Amico, S.D., Baschirotto, A., Matteis, M.D., Ghittori, N., Vigna, A., Malcovati, P.: A CMOS 5nV/√Hz 74-dB-Gain-Range 82-dB-DR multistandard baseband chain for Bluetooth, UMTS and WLAN. IEEE J. Solid-State Circuits SC-43(15), 1534–1541 (2008)CrossRefGoogle Scholar
  27. [5.27]
    Chamla, D., Kaiser, A., Cathelin, A., Belot, D.: A Gm-C low-pass filter for zero-IF mobile applications with a very wide tuning range. IEEE J. Solid-State Circuits SC-40, 1443–1449 (2005)CrossRefGoogle Scholar
  28. [5.28]
    Guthrie, B., Hughes, J., Sayers, T., Spencer, A.: A CMOS gyrator low-IF filter for a dual-mode Bluetooth/Zigbee receiver. IEEE J. Solid-State Circuits SC-40, 1872–1879 (2005)CrossRefGoogle Scholar
  29. [5.29]
    Nauta, B.: A CMOS transconductance-C filter for very high frequencies. IEEE J. Solid-State Circuits SC-27, 142–153 (1992)CrossRefGoogle Scholar
  30. [5.30]
    Wu, J.T., Chang, K.L.: MOS charge pumps for low voltage operation. IEEE J. Solid-State Circuits SC-33, 592–597 (1998)CrossRefGoogle Scholar
  31. [5.31]
    Alzaher, H.A., Alghamdi, M.K.: A CMOS bandpass filter for low-IF Bluetooth receivers. IEEE Trans. Circuit Syst. Circuits Part I 53, 1636–1647 (2006)Google Scholar
  32. [5.32]
    Emira, A.A., Sanchez-Sinencio, E.: A pseudo-differential complex filter for Bluetooth with frequency tuning. IEEE Trans. Circuit Syst. Part II 50, 742–754 (2003)Google Scholar
  33. [5.33]
    Elahmadi, S., Bussmann, M., Baranuskas, D., Zelenin, D., Edwards, J., Tran, K., Linder, L.F., Gill, C., Tan, H., Ng, D., El-Ahmadi, S.: An 11.1 Gbps analog PRML receiver for electronic dispersion compensation of fiber optic communications. IEEE J. Solid-State Circuits SC-45, 1330–1344 (2010)CrossRefGoogle Scholar
  34. [5.34]
    Kitsunezuka, M., Hori, S., Maeda, T.: A widely tunable, reconfigurable CMOS analog baseband IC for software-defined radio. IEEE J. Solid-State Circuits SC-44, 2496–2502 (2009)CrossRefGoogle Scholar
  35. [5.35]
    Kitsunezuka, M., Tokairin, T., Maeda, T., Fukaishi, M.: A low-IF/zero-IF reconfigurable analog baseband IC with an I/Q imbalance cancellation scheme. IEEE J. Solid-State Circuits SC-46, 572–582 (2011)CrossRefGoogle Scholar
  36. [5.36]
    Casson, A., Rodriguez-Villegas, E.: A 60pW gmC continuous time wavelet transform circuit for portable EEG systems. IEEE J. Solid-State Circuits SC-46, 1406–4115 (2011)CrossRefGoogle Scholar
  37. [5.37]
    Pandey, P., Silva-Martinez, J., Liu, X.: A CMOS 140-mW fourth-order continuous time low-pass filter stabilized with a class AB common mode feedback operating at 550MHz. IEEE Trans. Circuit Syst. Part-I 53, 811–819 (2006)CrossRefGoogle Scholar
  38. [5.38]
    Bollati, G., Marchese, S., demicheli, M., Castello, R.: An eighth-order CMOS low-pass filter with 30–120 MHz tuning range and programmable boost. IEEE J. Solid-State Circuits SC-36, 1056–1066 (2001)CrossRefGoogle Scholar
  39. [5.39]
    Zadeh, H.P.F., Rincon-Mora, G.A.: A programmable 210 μV offset rail-to-rail Gm-C filter. IEEE Trans. Circuit Syst. Part-I 54, 1636–1646 (2007)CrossRefGoogle Scholar
  40. [5.40]
    Enz, C.S., Temes, G.C.: Circuit techniques for reducing the effect of opamp imperfections: Auto zeroing, correlated double sampling and chopper stabilization. Proc. IEEE 35, 476–489 (2000)Google Scholar
  41. [5.41]
    Mobarak, M., Onabajo, M., Silva-Martinez, J., Sanchez-Sinencio, E.: Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE J. Solid-State Circuits SC-45, 351–366 (2010)CrossRefGoogle Scholar
  42. [5.42]
    Acosta, L., Jimenez, M., Carvajal, R.G., Lopez-Martin, A.J., Ramirez-Angulo, J.: Highly linear tunable CMOS Gm-C low-pass filter. IEEE Trans. Circuit Syst.Part I 56, 2145–2158 (2009)MathSciNetCrossRefGoogle Scholar
  43. [5.43]
    Willingham, S.D., Martin, K.W., Ganesan, A.: A BiCMOS low distortion 8-MHz low-pass filter. IEEE J. Solid-State Circuits SC-28, 1234–1245 (1993)CrossRefGoogle Scholar
  44. [5.44]
    Le-Thai, H., Nguyen, H.-N., Cho, H.-S., Lee, J.-S., Lee, S.-G.: An IF band-pass filter based on low distortion transconductor. IEEE J. Solid-State Circuits SC-45, 2250–2261 (2010)Google Scholar
  45. [5.45]
    Tajalli, A., Leblebici, Y.: Low-power and widely tunable linearized biquadratic low-pass transconductor-C filter. IEEE Trans. Circuit Syst.-Part II 58, 159–163 (2011)MathSciNetCrossRefGoogle Scholar
  46. [5.46]
    Bruschi, P., Nizza, N., Schipani, M., Cardisciani, D.: A fully integrated single-ended 1.5–15 Hz low-pass filter with linear tuning law. IEEE J. Solid-State Circuits SC-42, 1522–1528 (2007)CrossRefGoogle Scholar
  47. [5.47]
    Pavan, S., Tsividis, Y.P., Nagaraj, K.: Widely programmable high-frequency continuous-time filters in digital CMOS technology. IEEE J. Solid-State Circuits SC-35, 503–511 (2000)CrossRefGoogle Scholar
  48. [5.48]
    Lo, T.Y., Hung, C.C.: A wide tuning range Gm-C continuous-time analog filter. IEEE Trans. Circuit Syst. 54, 713–722 (2007)CrossRefGoogle Scholar
  49. [5.49]
    Chen, M., Silva-Martinez, J., Rokhsaz, S., Robinson, M.: A 2-V pp 80–200 MHz fourth-order continuous-time linear phase filter with automatic frequency tuning. IEEE J. Solid-State Circuits SC-38, 1745–1749 (2003)CrossRefGoogle Scholar
  50. [5.50]
    Pankiewicz, B., Wojcikoweski, M., Szczepanski, S., Sun, Y.: A field-programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE J. Solid-State Circuits SC-37, 125–136 (2002)CrossRefGoogle Scholar
  51. [5.51]
    Lewinski, A.J., Silva-Martinez, J.: A 30 MHz fifth-order elliptic low-pass CMOS filter with 65-dB spurious-free dynamic range. IEEE Trans. Circuit Syst. 54, 469–480 (2007)Google Scholar
  52. [5.52]
    Chen, J., Sanchez-Sinencio, E., Silva-Martinez, J.: Frequency dependent harmonic distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Trans. Circuit Syst. 53, 499–510 (2006)CrossRefGoogle Scholar
  53. [5.53]
    Silva-Martinez, J., Adut, J., Rocha-Perez, J.M., Robinson, M.: A 60-mW 200 MHz continuous-time seventh order linear phase filter with on-chip automatic tuning. IEEE J. Solid-State Circuits SC-38, 216–225 (2003)CrossRefGoogle Scholar
  54. [5.54]
    Chatterji, S., Tsividis, Y., Kinget, P.: 0.5V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid-State Circuits SC-40, 2373–2387 (2005)CrossRefGoogle Scholar
  55. [5.55]
    Andreani, P., Mattison, S.: On the use of Nauta’s transconductor in low frequency CMOS gm-C band-pass filters. IEEE J. Solid-State Circuits SC-37, 114–124 (2002)CrossRefGoogle Scholar
  56. [5.56]
    Vemulapalli, G., Hanumolu, P.K., Kook, Y.J., Moon, U.K.: A 0.8V accurately tunable linear continuous-time filter. IEEE J. Solid-State Circuits SC-40, 1972–1977 (2005)CrossRefGoogle Scholar
  57. [5.57]
    Sumesaglam, T., Karsiayan, A.I.: A digital approach for automatic tuning of continuous-time high-Q filters. IEEE Trans. Circuit Syst. 50, 755–761 (2003)CrossRefGoogle Scholar
  58. [5.58]
    Fiorenza, J.K., Sepke, T., Holloway, P., Sodini, C.G., Lee, H.S.: Comparator based Switched-capacitor circuits for scaled CMOS technologies. IEEE J. Solid-State Circuits SC-41, 2658–2668 (2009)CrossRefGoogle Scholar
  59. [5.59]
    Huang, M.C., Lin, S.I.: A fully differential comparator based Switched-capacitor ΔΣ modulator. IEEE Trans. Circuit Syst. Part II 56, 369–373 (2009)CrossRefGoogle Scholar
  60. [5.60]
    Bazes, M.: Two novel fully complimentary self-biased CMOS differential amplifiers. IEEE J. Solid-State Circuits SC-26, 165–168 (1991)CrossRefGoogle Scholar
  61. [5.61]
    White, R., Luschas, S., Krishnan, S.: Analysis of errors in a comparator based Switched-capacitor biquad filter. IEEE Trans. Circuit Syst. Part II 56, 704–708 (2009)CrossRefGoogle Scholar
  62. [5.62]
    Chae, Y., Han, G.: Low-voltage low power inverter based switched-capacitor delta-sigma modulator. IEEE J. Solid-State Circuits SC-44, 458–472 (2009)CrossRefGoogle Scholar
  63. [5.63]
    Pavan, S., Sankar, P.: Power reduction in continuous-time delta-sigma modulators using the assisted opamp technique. IEEE J. Solid-State Circuits SC-46, 1365–1379 (2010)CrossRefGoogle Scholar
  64. [5.64]
    Ortmanns, M., Gerfers, F., Manoli, Y.: A continuous-time sigma-delta modulator with switched capacitor controlled current mode feedback. In: Proceedings of the ESSCIRC, pp. 249–252 (2003)Google Scholar
  65. [5.65]
    Chae, Y., Cheon, J., Lim, S., Kwon, M., Yoo, K., Jung, W., Lee, D.-H., Ham, S., Han, G.: A 2.1 M Pixels, 120 frames/s CMOS image sensor with column-parallel Δ-Σ ADC architecture. IEEE J. Solid-State Circuits SC-46, 236–247 (2011)CrossRefGoogle Scholar
  66. [5.66]
    Matsukawa, K., Takayama, M., Obata, K., Dosho, S., Matsuzawa, A.: A fifth-order continuous-time delta-sigma modulator with single-opamp resonator. IEEE J. Solid-State Circuits SC-45, 697–706 (2010)CrossRefGoogle Scholar
  67. [5.67]
    Vallese, A., Bevilacqua, A., Sandner, C., Tiebout, M., Gerosa, A., Neviani, A.: Analysis and design of an integrated notch filter for the rejection of interference in UWB systems. IEEE J. Solid-State Circuits SC-44, 331–343 (2009)CrossRefGoogle Scholar
  68. [5.68]
    Pirola, A., Liscidini, A., Castello, R.: Current-mode WCDMA channel filter with in-band noise shaping. IEEE J. Solid-State Circuits SC-45, 1770–1780 (2010)CrossRefGoogle Scholar
  69. [5.69]
    Dhanasekharan, V., Gambhir, M., Silva-Martinez, K.J., Sanchez-Sinencio, E.: A 11 GHz fifth order Active – LC Butterworth type equalizing filter. IEEE J. Solid-State Circuits SC-42, 2411–2420 (2007)CrossRefGoogle Scholar
  70. [5.70]
    Hori, S., Maeda, T., Yano, H., Matsuno, N., Numata, K., Yoshida, N., Takahashi, Y., TYamase, T., Walkington, R., Hida, H.: A widely tunable CMOS-Gm-C filter with a negative source degeneration resistor transconductor. In: Proceedings of the. ESSCIRC, pp. 449–452 (2003)Google Scholar
  71. [5.71]
    Hori, S., Maeda, T., Matsuno, N., Hida, H.: Low-power widely tunable Gm-C filter with an adaptive dc blocking triode based MOSFET transconductor. In: Proceedings of the ESSCIRC, pp. 9–10 (2004)Google Scholar
  72. [5.72]
    Lo, T., Hung, C.: Low range multi-mode Gm-C channel selection filter for mobile applications. Proceedings of IEEE Custom Integrated Circuits Conference (CICC), pp. 635–638 (2007)Google Scholar
  73. [5.73]
    Graham, D.W., Hasler, P.E., Chawla, R., Smith, P.D.: A low-power programmable bandpass filter section for high order filter applications. IEEE Trans. Circuit Syst. 54, 1165–1176 (2007)CrossRefGoogle Scholar
  74. [5.74]
    Odame, K.M., Anderson, D.V., Hasler, P.: A band-pass filter with inherent gain adaptation for hearing applications. IEEE Trans. Circuit Syst. Part I 55, 786–795 (2008)MathSciNetCrossRefGoogle Scholar
  75. [5.75]
    Lu, C.Y., Silva-Rivas, J.F., Kode, P., Silva-Martinez, J.: A sixth-order 200MHz IF bandpass sigma-delta modulator with over 68 dB SNDR in 10 MHz bandwidth. IEEE J. Solid-State Circuits SC-45, 1122–1136 (2010)CrossRefGoogle Scholar

Further Reading

  1. Georgescu, B., Finvers, I.G., Ghannouchi, F.: 2 GHz Q-enhanced Active filter with low passband distortion and high dynamic range. IEEE J. Solid-State Circuits SC-41, 2029–2039 (2006)CrossRefGoogle Scholar
  2. Kurahashi, P., Hanumolu, P.K., Temes, G.C., Moon, U.K.: Design of low voltage highly linear Switched-R-MOSFET-C filters. IEEE J. Solid-State Circuits SC-42, 1699–1709 (2007)CrossRefGoogle Scholar
  3. Dhanasekharan, V., Gambhir, M., Elsayed, M.M., Sanchez-Sinencio, E., Silva-Martinez, J., Mishra, C., Chen, L., Pankratz, E.J.: A continuous-time multi-bit Δ-Σ ADC Using timedomain quantizer and feedback element. IEEE J. Solid-State Circuits SC-46, 639–650 (2011)CrossRefGoogle Scholar
  4. Laxminidhi, T., Pavan, S.: Efficient design centering of High-frequency Integrated continuous time filters. IEEE Trans. Circuit Syst. 54, 1481–1488 (2007)Google Scholar
  5. Groeneweld, G.: Noise and group delay in active filters. IEEE Trans. Circuit Syst. 54, 1471–1480 (2007)CrossRefGoogle Scholar
  6. Zhang, X., El-Masry, E.I.: A novel CMOS OTA based on body-driven MOSFETs and its application in OTA-C filters. IEEE Trans. Circuit Syst. 54, 1204–1212 (2007)CrossRefGoogle Scholar
  7. Chawla, R., Adil, F., Serrano, G., Hasler, P.E.: Programmable Gm-C filters using floating-gate operational transconductance amplifiers. IEEE Trans. Circuit Syst. 54(Part I), 481–491 (2007)Google Scholar
  8. He, X., Kuhn, W.B.: A 2.5 GHz low-power, high dynamic range, self-tuned Q-enhanced LC filter in SOI. IEEE J. Solid-State Circuits SC-40, 1618–1628 (2005)CrossRefGoogle Scholar
  9. Krishnapura, N., Tsividis, Y.: Noise and power reduction in filters through the use of adjustable biasing. IEEE J. Solid-State Circuits SC-36, 1912–1920 (2001)CrossRefGoogle Scholar
  10. Tsividis, Y., Krishnapura, N., Palaskas, Y., Toth, L.: Internally varying analog circuits minimize power dissipation. IEEE Circuit. Devic. Mag. 19, 63–72 (2003)CrossRefGoogle Scholar
  11. Gambhir, M., Dhanasekharan, V., Silva-Martinez, J., Sanchez-Sinencio, E.: Low power architectures and circuit techniques for high boost wide-band Gm-C filters. IEEE Trans. Circuit Syst. Part I 54, 458–468 (2007)Google Scholar
  12. Koziel, S., Szczepanski, S.: Design of highly linear tunable CMOS OTA for continuous time filters. IEEE Trans. Circuit Syst. Part II 49, 110–122 (2002)CrossRefGoogle Scholar
  13. Yodprasit, U., Enz, C.: A 1.5V 75dB dynamic range third-order Gm-C filter integrated in a 0.18um standard digital CMOS process. IEEE J. Solid-State Circuits SC-38, 1189–1197 (2003)Google Scholar
  14. Palaskas, Y., Tsividis, Y., Prodanov, V., Boccuzzi, V.: A divide and conquer technique for implementing wide dynamic range continuous time filters. IEEE J. Solid-State Circuits SC-39, 297–307 (2004)CrossRefGoogle Scholar
  15. Huang, H., Lee, E.K.F.: Design of low voltage CMOS continuous time filter with on chip automatic tuning. IEEE J. Solid-State Circuits SC-36, 1168–1177 (2001)CrossRefGoogle Scholar
  16. Dosho, S., Morie, T., Fujiyama, H.: A 200 MHz seventh-order equiripple continuous-time filter by design of nonlinearity suppression in 0.25 um CMOS process. IEEE J. Solid-State Circuits SC-38, 1189–1197 (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Electronics Corporation of India, Ltd.BangaloreIndia

Personalised recommendations