Skip to main content

Applications to Biology and Medicine

  • Chapter
  • First Online:
An Introduction to Continuous-Time Stochastic Processes

Abstract

This chapter is devoted to an analysis of fundamental results related to topics that have attracted the attention of a large number of scientists from many disciplines. The key issue is individual-based models and their approximation, leading to the so-called mean field models and to nonlinear PDEs. This category includes ant colonies, herd behavior, and swarm intelligence, all of which have generated a large and current body of research in biology, physics, operations research, economics, and related fields. An additional result refers to an important application of Itô-Lévy calculus to stochastic models in neurosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalen O., Nonparametric inference for a family of counting processes, Annals of Statistics, 701–726, 6; 1978.

    Google Scholar 

  • Aletti G. and Capasso V., Profitability in a multiple strategy market, Decis. Econ. Finance, 145–152, 26; 2003.

    MathSciNet  Google Scholar 

  • Andersen P. K., Borgan Ø., Gill R.D., and Keiding N., Statistical Models Based on Counting Processes, Springer, Heidelberg; 1993.

    MATH  Google Scholar 

  • Anderson W. J., Continuous-Time Markov Chains: An Application-Oriented Approach, Springer, New York; 1991.

    Google Scholar 

  • Applebaum D., Levy Processes and Stochastic Calculus, Cambridge University Press, Cambridge; 2004.

    MATH  Google Scholar 

  • Arnold L., Stochastic Differential Equations: Theory and Applications, Wiley, New York; 1974.

    MATH  Google Scholar 

  • Ash R. B., Real Analysis and Probability, Academic, London; 1972.

    Google Scholar 

  • Ash R. B. and Gardner M. F., Topics in Stochastic Processes, Academic, London; 1975.

    MATH  Google Scholar 

  • Aubin J.-P., Applied Abstract Analysis, Wiley, New York; 1977.

    MATH  Google Scholar 

  • Bachelier L., Théorie de la spéculation, Ann. Sci. École Norm. Sup., 21–86, 17; 1900.

    Google Scholar 

  • Bailey N. T. J., The Mathematical Theory of Infectious Diseases, Griffin, London; 1975.

    MATH  Google Scholar 

  • Baldi P., Equazioni differenziali stocastiche, UMI, Bologna; 1984.

    Google Scholar 

  • Bartholomew D. J., Continuous time diffusion models with random duration of interest, J. Math. Sociol., 187–199, 4; 1976.

    MathSciNet  Google Scholar 

  • Bauer H., Probability Theory and Elements of Measure Theory, Academic, London; 1981.

    MATH  Google Scholar 

  • Becker N., Analysis of Infectious Disease Data, Chapman & Hall, London; 1989.

    Google Scholar 

  • Belleni-Morante A. and McBride A. C., Applied Nonlinear Semigroups, Wiley, Chichester; 1998.

    MATH  Google Scholar 

  • Bertoin J., Lévy Processes, Cambridge University Press, Cambridge, UK; 1996.

    MATH  Google Scholar 

  • Bhattacharya R. N. and Waymire E. C., Stochastic Processes with Applications, Wiley, New York; 1990.

    Google Scholar 

  • Bianchi A., Capasso V., and Morale D., Estimation and prediction of a nonlinear model for price herding in Complex Models and Intensive Computational Methods for Estimation and Prediction (C. Provasi, Ed.), CLUEP, Padova, 2005, pp. 365–370.

    Google Scholar 

  • Billingsley P., Convergence of Probability Measures, Wiley, New York; 1968.

    MATH  Google Scholar 

  • Billingsley P., Probability and Measure, Wiley, New York; 1986.

    MATH  Google Scholar 

  • Black F. and Scholes M., The pricing of options and corporate liabilities, J. Pol. Econ., 637–654, 81; 1973.

    Google Scholar 

  • Bohr H., Almost Periodic Functions, Chelsea, New York; 1947.

    Google Scholar 

  • Borodin A. and Salminen P., Handbook of Brownian Motion: Facts and Formulae, Birkhä user, Boston; 1996.

    MATH  Google Scholar 

  • Boyle P. and Tian Y., Pricing lookback and barrier options under the CEV process, J. Fin. Quant. Anal., 241–264, 34; 1999.

    Google Scholar 

  • Brace A., Gatarek D., & Musiela M., The market model of interest rate dynamics, Math. Fin., 127–154, 7; 1997.

    MathSciNet  Google Scholar 

  • Breiman L., Probability, Addison-Wesley, Reading, MA; 1968.

    MATH  Google Scholar 

  • Bremaud P., Point Processes and Queues: Martingale Dynamics, Springer, Heidelberg; 1981.

    MATH  Google Scholar 

  • Burger M., Capasso V. and Morale D., On an aggregation model with long and short range interaction, Nonlinear Anal. Real World Appl., 939–958, 3; 2007.

    MathSciNet  Google Scholar 

  • Cai G. Q. and Lin Y. K., Stochastic analysis of the Lotka-Volterra model for ecosystems, Phys. Rev. E, 041910, 70; 2004.

    Google Scholar 

  • Capasso V., A counting process approach for stochastic age-dependent population dynamics, in Biomathematics and Related Computational Problems (L. M. Ricciardi, Ed.), pp. 255–269, Kluwer, Dordrecht; 1988.

    Google Scholar 

  • Capasso V., A counting process approach for age-dependent epidemic systems, in Stochastic Processes in Epidemic Theory (J. P. Gabriel et al., Eds.) pp. 118–128, Lecture Notes in Biomathematics, Vol. 86, Springer, Heidelberg; 1990.

    Google Scholar 

  • Capasso V., Mathematical Structures of Epidemic Systems, Springer, Heidelberg; 1993. 2nd corrected printing; 2008.

    Google Scholar 

  • Capasso V., Di Liddo A., and Maddalena L., Asymptotic behaviour of a nonlinear model for the geographical diffusion of innovations, Dynamic Systems and Applications, 207–220, 3; 1994.

    Google Scholar 

  • Capasso V. and Morale D., Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. Appl. 574–603, 27; 2009.

    Google Scholar 

  • Capasso V., Morale D., and Sioli F., An agent-based model for “price herding”, applied to the automobile market, MIRIAM reports, Milan; 2003.

    Google Scholar 

  • Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Rat. Mech. Anal., 269–361, 147; 1999.

    MathSciNet  Google Scholar 

  • Carrillo J. A., McCann R. J. and Villani C., Kinetic equilibration rates for granular nedia and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoam., 971–1018, 19; 2003.

    MathSciNet  Google Scholar 

  • Champagnat N., Ferriére R., and Méléard S. Unifying evolutionary dynamics: From individula stochastic processes to macroscopic models, Theor. Pop. Biol., 297–321, 69; 2006.

    Google Scholar 

  • Chan K. C., Karolyi G.A., Longstaff F.A. and Sanders A. B., An empirical comparison of alternative models of the short-term interest rate, J. Fin., 1209–1227, 47; 1992.

    Google Scholar 

  • Chiang C.L., Introduction to Stochastic Processes in Biostatistics, Wiley, New York; 1968.

    MATH  Google Scholar 

  • Chow Y. S. and Teicher H., Probability Theory: Independence, Interchangeability, Martingales, Springer, New York; 1988.

    MATH  Google Scholar 

  • Chung K. L., A Course in Probability Theory, Second Edition, Academic, New York; 1974.

    MATH  Google Scholar 

  • Cox J. C., The constant elasticity of variance option pricing model, J. Portfolio Manage., 15–17, 22; 1996.

    Google Scholar 

  • Cox J. C., Ross S. A. and Rubinstein M., Option pricing: A simplified approach, J. Fin. Econ., 229–263, 7; 1979.

    Google Scholar 

  • Çynlar E., Introduction to Stochastic Processes, Prentice Hall, Englewood Cliffs, NJ; 1975.

    Google Scholar 

  • Dalang R. C., Morton A. and Willinger W., Equivalent martingale measures and non-arbitrage in stochastic securities market models, Stochast. Stochast. Rep., 185–201, 29; 1990.

    MathSciNet  Google Scholar 

  • Daley D. and Vere-Jones D., An Introduction to the Theory of Point Processes, Springer, Berlin; 1988.

    MATH  Google Scholar 

  • Daley D. and Vere-Jones D., An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure, Springer, Heidelberg; 2008.

    Google Scholar 

  • Darling D. A. D. and Siegert A. J. F., The first passage time problem for a continuum Markov process, Ann. Math. Stat., 624–639, 24; 1953.

    MathSciNet  Google Scholar 

  • Davis M. H. A., Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models, J. R. Stat. Soc. Ser. B, 353–388, 46; 1984.

    Google Scholar 

  • Delbaen F. and Schachermeyer W., A general version of the fundamental theorem of asset pricing, Math. Annal., 463–520, 300; 1994.

    Google Scholar 

  • De Masi A. and Presutti E., Mathematical Methods for Hydrodynamical Limits, Springer, Heidelberg; 1991.

    Google Scholar 

  • Dieudonné J., Foundations of Modern Analysis, Academic, New York; 1960.

    MATH  Google Scholar 

  • Di Nunno G., Øksendal B. and Proske F., Malliavin Calculus for Levy Processes with Applications to Finance, Springer, Berlin Heidelberg; 2009.

    Google Scholar 

  • Donsker M. D. and Varadhan S. R. S., Large deviations from a hydrodynamical scaling limit, Comm. Pure Appl. Math., 243–270, 42; 1989.

    MathSciNet  Google Scholar 

  • Doob J. L., Stochastic Processes, Wiley, New York; 1953.

    MATH  Google Scholar 

  • Dudley R. M., Real Analysis and Probability, Cambridge University Press, Cambridge; 2005.

    Google Scholar 

  • Duffie D., Dynamic Asset Pricing Theory, Princeton University Press, Princeton, NJ; 1996.

    Google Scholar 

  • Dupire B., Pricing with a smile, RISK, 18–20, 1; 1994.

    Google Scholar 

  • Durrett R. and Levin S. A., The importance of being discrete (and spatial), Theor. Pop. Biol., 363–394, 46; 1994.

    Google Scholar 

  • Dynkin E. B., Markov Processes, Springer, Berlin, Vols. 1–2; 1965.

    Google Scholar 

  • Einstein A., Über die von der molekularkinetischen Theorie der Wärme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annal. Phys., 549–560, 17; 1905.

    Google Scholar 

  • Embrechts P., Klüppelberg C. and Mikosch T., Modelling Extreme Events for Insurance and Finance, Springer, Berlin; 1997.

    Google Scholar 

  • Epstein J. and Axtell R., Growing Artificial Societies–Social Sciences from the Bottom Up, Brookings Institution Press and MIT Press, Cambridge, MA; 1996.

    Google Scholar 

  • Ethier S. N. and Kurtz T. G., Markov Processes, Characterization and Convergence, Wiley, New York; 1986.

    MATH  Google Scholar 

  • Feller W., An Introduction to Probability Theory and Its Applications, Wiley, New York; 1971.

    MATH  Google Scholar 

  • Flierl G., Grünbaum D., Levin S. A. and Olson D., From individuals to aggregations: The interplay between behavior and physics, J. Theor. Biol., 397–454, 196; 1999.

    Google Scholar 

  • Fournier N. and Méléard S., A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. Appl. Prob., 1880–1919, 14; 2004.

    Google Scholar 

  • Franke J., Härdle W. K. and Hafner C. M., Statistics of Financial Markets: An Introduction, Second Edition, Springer, Heidelberg; 2011.

    MATH  Google Scholar 

  • Friedman A., Partial Differential Equations, Krieger, New York; 1963.

    MATH  Google Scholar 

  • Friedman A., Partial Differential Equations of Parabolic Type, Prentice-Hall, London; 1964.

    MATH  Google Scholar 

  • Friedman A., Stochastic Differential Equations and Applications, Academic, London; 1975. Two volumes bounded as one, Dover, Mineola, NY; 2004.

    Google Scholar 

  • Fristedt B., and Gray L., A Modern Approach to Probability Theory, Birkhäuser, Boston; 1997.

    MATH  Google Scholar 

  • Gard T. C., Introduction to Stochastic Differential Equations, Marcel Dekker, New York; 1988.

    MATH  Google Scholar 

  • Gihman I. I. and Skorohod A. V., Stochastic Differential Equations, Springer, Berlin; 1972.

    MATH  Google Scholar 

  • Gihman I. I. and Skorohod A. V., The Theory of Random Processes, Springer, Berlin; 1974.

    Google Scholar 

  • Gnedenko B. V., The Theory of Probability, Chelsea, New York; 1963.

    Google Scholar 

  • Grigoriu M., Stochastic Calculus: Applications to Science and Engineering, Birkhäuser, Boston; 2002.

    Google Scholar 

  • Grünbaum D. and Okubo A., Modelling social animal aggregations, in Frontiers of Theoretical Biology (S. A. Levin, Ed.) pp. 296–325, Lectures Notes in Biomathematics, Vol. 100, Springer, New York; 1994.

    Google Scholar 

  • Gueron S., Levin S. A. and Rubenstein D. I., The dynamics of herds: From individuals to aggregations, J. Theor. Biol., 85–98, 182; 1996.

    Google Scholar 

  • Hagan P. S., Kumar D., Lesniewski A. and Woodward D. E., Managing smile risk, Wilmott Mag., 84–102, 1; 2002

    Google Scholar 

  • Harrison J. M. and Kreps D. M., Martingales and arbitrage in multiperiod securities markets, J. Econ. Theory, 381–408, 20; 1979.

    MathSciNet  Google Scholar 

  • Harrison J. M. and Pliska S. R., Martingales and stochastic integrals in the theory of continuous trading, Stochast. Process. Appl., 215–260, 11; 1981.

    MathSciNet  Google Scholar 

  • Has’minskii R. Z., Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, The Netherlands; 1980.

    Google Scholar 

  • Heath D., Jarrow R. and Morton A., Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation, Econometrica, 77–105, 1; 1992.

    Google Scholar 

  • Heston S. L., A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Rev. Fin. Stud., 327–343, 6; 1993.

    Google Scholar 

  • Hunt P. J. and Kennedy J. E., Financial Derivatives in Theory and Practice, Wiley, New York; 2000.

    MATH  Google Scholar 

  • Hull J. and White A., Pricing interest rate derivative securities, Rev. Fin. Stud., 573–592, 4; 1990.

    Google Scholar 

  • Ikeda N. and Watanabe S., Stochastic Differential Equations and Diffusion Processes, North-Holland, Kodansha; 1989.

    MATH  Google Scholar 

  • Itô K. and McKean H. P., Diffusion processes and their sample paths, Springer, Berlin; 1965.

    MATH  Google Scholar 

  • Jacobsen M., Statistical Analysis of Counting Processes, Springer, Heidelberg; 1982.

    MATH  Google Scholar 

  • Jacod J. and Protter P., Probability Essentials, Springer, Heidelberg; 2000.

    MATH  Google Scholar 

  • Jacod J. and Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer Lecture Notes in Mathematics, Springer, Berlin; 1987.

    MATH  Google Scholar 

  • Jamshidian F., LIBOR and swap market models and measures, Fin. Stochast., 43–67, 1; 1997.

    Google Scholar 

  • Jeanblanc M., Yor M. and Chesney M., Mathematical Methods for Financial Markets, Springer, London; 2009.

    MATH  Google Scholar 

  • Jelinski Z. and Moranda P., Software reliability research, in Statistical Computer Performance Evaluation, pp. 466–484, Academic, New York; 1972.

    Google Scholar 

  • Kallenberg O., Foundations of Modern Probability, Springer, Berlin; 1997.

    MATH  Google Scholar 

  • Karatzas I. and Shreve S. E., Brownian Motion and Stochastic Calculus, Springer, New York; 1991.

    MATH  Google Scholar 

  • Karlin S. and Taylor H. M., A First Course in Stochastic Processes, Academic, New York; 1975.

    MATH  Google Scholar 

  • Karlin S. and Taylor H. M., A Second Course in Stochastic Processes, Academic, New York; 1981.

    MATH  Google Scholar 

  • Karr A. F., Point Processes and Their Statistical Inference, Marcel Dekker, New York; 1986.

    MATH  Google Scholar 

  • Karr A. F., Point Processes and Their Statistical Inference, Second Edition Revised and expanded. Marcel Dekker, New York; 1991.

    MATH  Google Scholar 

  • Klenke A., Probability Theory, Springer, Heidelberg; 2008.

    Google Scholar 

  • Kloeden P. E. and Platen E., Numerical Solution of Stochastic Differential Equations, Springer, Heidelberg; 1999.

    Google Scholar 

  • Kolmogorov A. N., Foundations of the Theory of Probability, Chelsea, New York; 1956.

    MATH  Google Scholar 

  • Kolmogorov A. N. and Fomin E. S. V., Elements of Theory of Functions and Functional Analysis, Groylock, Moscow; 1961.

    MATH  Google Scholar 

  • Kou S., A jump-diffusion model for option pricing, Manage. Sci., 1086–1101, 48; 2002.

    Google Scholar 

  • Ladyzenskaja O. A., Solonnikov V. A. and Ural’ceva N.N., Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, RI, 1968.

    Google Scholar 

  • Lamperti J., Stochastic Processes: A Survey of the Mathematical Theory, Springer, New York; 1977.

    MATH  Google Scholar 

  • Lapeyre B., Pardoux E. and Sentis R. Introduction to Monte-Carlo methods for transport and diffusion equations, Oxford University Press, Oxford; 2003.

    MATH  Google Scholar 

  • Last G. and Brandt A., Marked Point Processes on the Real Line: The Dynamic Approach, Springer, Heidelberg; 1995.

    MATH  Google Scholar 

  • Lewis A. L., Option Valuation Under Stochastic Volatility, Finance Press, Newport Beach; 2000.

    MATH  Google Scholar 

  • Lipster R. and Shiryaev A. N., Statistics of Random Processes, I: General Theory, Springer, Heidelberg; 1977.

    Google Scholar 

  • Lipster R. and Shiryaev A. N., Statistics of Random Processes, II: Applications, Springer, Heidelberg; Second Edition, 2010.

    Google Scholar 

  • Loève M., Probability Theory, Van Nostrand-Reinhold, Princeton, NJ; 1963.

    MATH  Google Scholar 

  • Lu L., Optimal control of input rates of Stein’s models, Math. Med. Biol., 31–46, 28; 2011.

    Google Scholar 

  • Ludwig D., Stochastic Population Theories, Lecture Notes in Biomathematics, Vol. 3, Springer, Heidelberg; 1974.

    Google Scholar 

  • Lukacs E., Characteristic Functions, Griffin, London; 1970.

    MATH  Google Scholar 

  • Mahajan V. and Wind Y., Innovation Diffusion Models of New Product Acceptance, Ballinger, Cambridge, MA; 1986.

    Google Scholar 

  • Malrieu F., Convergence to equilibrium for granular media equations and their Euler scheme, Ann. Appl. Prob., 540–560, 13; 2003.

    MathSciNet  Google Scholar 

  • Mandelbrot K. and van Ness J., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 422–437, 10; 1968.

    Google Scholar 

  • Mao X., Stochastic Differential Equations and Applications, Horwood, Chichester; 1997.

    MATH  Google Scholar 

  • Mao X., Marion G. and Renshaw E., Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 95–110, 97; 2002.

    MathSciNet  Google Scholar 

  • Mao X, et al. Stochastic differential delay equations of population dynamics, J. Math. Anal. Appl., 296–320, 304;2005.

    Google Scholar 

  • Markowich P. A. and Villani C., On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, Math. Contemp., 1–31, 19; 2000.

    MathSciNet  Google Scholar 

  • Medvegyev P., Stochastic Integration Theory, Oxford University Press, Oxford; 2007.

    MATH  Google Scholar 

  • Méléard S., Asymptotic behaviour of some interacting particle systems: McKean–Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations (D. Talay, L. Tubaro, Eds.) pp. 42–95, Lecture Notes in Mathematics, Vol. 1627, CIME Subseries, Springer, Heidelberg; 1996.

    Google Scholar 

  • Merton R. C., Theory of rational option pricing, Bell J. Econ. Manage. Sci., 141–183, 4; 1973.

    MathSciNet  Google Scholar 

  • Merton R. C., Option pricing when underlying stock returns are discontinuous, J. Fin. Econ., 125–144, 3; 1976.

    Google Scholar 

  • Métivier M., Notions fondamentales de la théorie des probabilités, Dunod, Paris; 1968.

    MATH  Google Scholar 

  • Meyer P. A., Probabilités et Potentiel, Ilermann, Paris; 1966.

    MATH  Google Scholar 

  • Mikosch T., Non-Life Insurance Mathematics, Springer, Berlin Heidelberg; Second Edition, 2009.

    Google Scholar 

  • Miltersen K. R., Sandmann K. and Sondermann D., Closed form solutions for term structure derivatives with log-normal interest rates, J. Fin., 409–430, 52; 1997.

    Google Scholar 

  • Morale D., Capasso V. and Oelschläger K., An interacting particle system modelling aggregation behaviour: From individuals to populations, J. Math. Biol.; 2004.

    Google Scholar 

  • Musiela M. and Rutkowski M., Martingale Methods in Financial Modelling, Springer, Berlin; 1998.

    Google Scholar 

  • Nagai T. and Mimura M., Some nonlinear degenerate diffusion equations related to population dynamics, J. Math. Soc. Japan, 539–561, 35; 1983.

    MathSciNet  Google Scholar 

  • Neveu J., Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco; 1965.

    MATH  Google Scholar 

  • Nowman K. B., Gaussian estimation of single-factor continuous time models of the term structure of interest rate, J. Fin., 1695–1706, 52; 1997.

    Google Scholar 

  • Oelschläger K., A law of large numbers for moderately interacting diffusion processes, Z. Wahrsch. verw. Geb., 279–322, 69; 1985.

    Google Scholar 

  • Oelschläger K., Large systems of interacting particles and the porous medium equation, J. Differential Equations, 294–346, 88; 1990.

    Google Scholar 

  • Øksendal B., Stochastic Differential Equations, Springer, Berlin; 1998.

    Google Scholar 

  • Okubo A., Dynamical aspects of animal grouping: Swarms, school, flocks and herds, Adv. BioPhys., 1–94, 22; 1986.

    Google Scholar 

  • Parzen E., Stochastic Processes, Holden-Day, San Francisco; 1962.

    MATH  Google Scholar 

  • Pascucci A., Calcolo Stocastico per la Finanza, Springer Italia, Milano; 2008.

    MATH  Google Scholar 

  • Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York; 1983.

    MATH  Google Scholar 

  • Pliska S. R., Introduction to Mathematical Finance: Discrete-Time Models, Blackwell, Oxford; 1997.

    Google Scholar 

  • Protter P., Stochastic Integration and Differential Equations, Springer, Berlin; 1990. Second Edition 2004.

    Google Scholar 

  • Rebolledo R., Central limit theorems for local martingales, Z. Wahrsch. verw. Geb., 269–286, 51; 1980.

    MathSciNet  Google Scholar 

  • Revuz D. and Yor M., Continuous Martingales and Brownian Motion, Springer, Heidelberg; 1991.

    MATH  Google Scholar 

  • Robert P., Stochastic Networks and Queues, Springer, Heidelberg; 2003.

    MATH  Google Scholar 

  • Rogers L. C. G. and Williams D., Diffusions, Markov Processes and Martingales, Vol. 1, Wiley, New York; 1994.

    MATH  Google Scholar 

  • Rolski T., Schmidli H., Schmidt V. and Teugels J., Stochastic Processes for Insurance and Finance, Wiley, New York; 1999.

    MATH  Google Scholar 

  • Roozen H., Equilibrium and extinction in stochastic population dynamics, Bull. Math. Biol., 671–696, 49; 1987.

    MathSciNet  Google Scholar 

  • Samorodnitsky G. and Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman & Hall/CRC Press, Boca Ration, FL; 1994.

    MATH  Google Scholar 

  • Sato K. I., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, UK; 1999.

    MATH  Google Scholar 

  • Schuss Z., Theory and Applications of Stochastic Differential Equations, Wiley, New York; 1980.

    MATH  Google Scholar 

  • Schuss Z., Theory and Applications of Stochastic Processes: An Analytical Approach, Springer, New York; 2010.

    Google Scholar 

  • Shiryaev A. N., Probability, Springer, New York; 1995.

    MATH  Google Scholar 

  • Shiryaev A. N. and A. S. Cherny Vector stochastic integrals and the fundamental theorems of asset pricing, Tr. Mat. Inst., Steklova, 12–56, 237; 2002.

    Google Scholar 

  • Skellam J. G., Random dispersal in theoretical populations, Biometrika, 196–218, 38; 1951.

    MathSciNet  Google Scholar 

  • Skorohod A. V., Studies in the Theory of Random Processes, Dover, New York; 1982.

    Google Scholar 

  • Skorohod A. V., Asymptotic Methods in the Theory of Stochastic Differential Equations, AMS, Providence, RI; 1989.

    Google Scholar 

  • Sobczyk K., Stochastic Differential Equations: With Applications to Physics and Engineering, Kluwer, Dordrecht; 1991.

    MATH  Google Scholar 

  • Stein R. B., A theoretical analysis of neuronal variability, Biophys. J., 173–194, 5; 1965.

    Google Scholar 

  • Stein R. B., Some models of neuronal variability, Biophys. J., 37–68, 7; 1967.

    Google Scholar 

  • Taira K., Diffusion Processes and Partial Differential Equations, Academic, New York; 1988.

    MATH  Google Scholar 

  • Tan W. Y., Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems, World Scientific, Singapore; 2002.

    MATH  Google Scholar 

  • Tucker H.G., A Graduate Course in Probability, Academic Press, New York; 1967.

    MATH  Google Scholar 

  • Tuckwell H. C., On the first exit time problem for temporarily homogeneous Markov process, J. Appl. Prob., 39–48, 13; 1976.

    MathSciNet  Google Scholar 

  • Tuckwell H. C., Stochastic Processes in the Neurosciences, SIAM, Philadelphia; 1989.

    Google Scholar 

  • Vasicek O., An equilibrium characterisation of the term structure, J. Fin. Econ., 177–188, 5; 1977.

    Google Scholar 

  • Ventcel’ A. D., A Course in the Theory of Stochastic Processes, Nauka, Moscow (in Russian); 1975. Second Edition 1996.

    Google Scholar 

  • Veretennikov A. Y., On subexponential mixing rate for Markov processes, Theory Prob. Appl., 110–122, 49; 2005.

    MathSciNet  Google Scholar 

  • Wang F. J. S., Gaussian approximation of some closed stochastic epidemic models, J. Appl. Prob., 221–231, 14; 1977.

    Google Scholar 

  • Warburton K. and Lazarus J., Tendency-distance models of social cohesion in animal groups, J. Theor. Biol., 473–488, 150; 1991.

    Google Scholar 

  • Wax N., Selected Papers on Noise and Stochastic Processes, Dover, New York; 1954.

    MATH  Google Scholar 

  • Williams D., Probability with Martingales, Cambridge University Press, Cambridge, UK; 1991.

    MATH  Google Scholar 

  • Wilmott P., Dewynne J. N. and Howison S. D.,Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford; 1993.

    Google Scholar 

  • Wu F., Mao X. and Chen K., A highly sensitive mean-reverting process in finance and the Euler–Maruyama approximations, J. Math. Anal. Appl., 540–554, 348; 2008.

    MathSciNet  Google Scholar 

  • Yang G., Stochastic epidemics as point processes, in Mathematics in Biology and Medicine (V. Capasso, E. Grosso, S. L. Paveri-Fontana, Eds.), pp. 135–144, Lectures Notes in Biomathematics, Vol. 57, Springer, Heidelberg; 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Bakstein, D. (2012). Applications to Biology and Medicine. In: An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8346-7_6

Download citation

Publish with us

Policies and ethics