This chapter provides an introduction and overview of the monograph, which is aimed at understanding how control algorithms can be designed for optical networks from a game-theoretic perspective. The first section gives a review of work in game theory for networks, followed by a brief introduction to the area of optical networks. The last section presents the scope of the monograph, followed by a chapter by chapter description of the monograph.


Game Theory Wavelength Division Multiplex Optical Line Terminal Virtual Topology Fiber Link 


  1. 1.
    Acemoglu, D., Ozaglar, A.: Costs of competition in general networks. In: Proceedings of the 44th IEEE Conference on Decision and Control, December, pp. 5324–5329 (2005) CrossRefGoogle Scholar
  2. 2.
    Agrawal, G.P.: Fiber-Optic Communication Systems, 3rd edn. Wiley, New York (2002) CrossRefGoogle Scholar
  3. 4.
    Alpcan, T., Basar, T.: A game-theoretic framework for congestion control in general topology networks. In: Proceedings of the 41st IEEE Conference on Decision and Control, December, pp. 1218–1224 (2002) CrossRefGoogle Scholar
  4. 8.
    Alpcan, T., Basar, T., Srikant, R., Altman, E.: CDMA uplink power control as a noncooperative game. In: Proceedings of the 40th IEEE Conference on Decision and Control, December, pp. 197–202 (2001) Google Scholar
  5. 9.
    Alpcan, T., Fan, X., Basar, T., Arcak, M., Wen, J.T.: Power control for multicell CDMA wireless networks: a team optimization approach. Wirel. Netw. 14(5), 647–657 (2008) CrossRefGoogle Scholar
  6. 10.
    Altman, E., Altman, Z.: S-modular games and power control in wireless networks. IEEE Trans. Autom. Control 48(5), 839–842 (2003) MathSciNetCrossRefGoogle Scholar
  7. 11.
    Altman, E., Basar, T.: Multiuser rate-based flow control. IEEE Trans. Commun. 46(7), 940–949 (1998) CrossRefGoogle Scholar
  8. 12.
    Altman, E., Basar, T., Jimenez, T., Shimkin, N.: Routing into two parallel links: game-theoretic distributed algorithms. J. Parallel Distrib. Comput. 61(9), 1367–1381 (2001) MATHCrossRefGoogle Scholar
  9. 13.
    Altman, E., Basar, T., Srikant, R.: Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users. IEEE Trans. Autom. Control 47(6), 917–930 (2002) MathSciNetCrossRefGoogle Scholar
  10. 14.
    Altman, E., Boulogne, T., El-Azouziand, R., Jimenez, T., Wynter, L.: A survey on networking games in telecommunications. Comput. Oper. Res. 33(2), 286–311 (2006) MathSciNetMATHCrossRefGoogle Scholar
  11. 16.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954) MathSciNetMATHCrossRefGoogle Scholar
  12. 20.
    Basar, T., Olsder, G.J.: In: Dynamic Noncooperative Game Theory. SIAM Series Classics in Applied Mathematics, 2nd edn. (1999) Google Scholar
  13. 21.
    Basar, T., Srikant, R.: Revenue-maximizing pricing and capacity expansion in a many-users regime. In: Proceedings of the 21st IEEE Conference on Computer Communications (INFOCOM), June 2002, pp. 294–301 (2002) Google Scholar
  14. 36.
    de Meyer, B., Marino, A.: Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides. In: Cahiers de la Maison des Sciences Economiques, pp. 1–7 (2005) Google Scholar
  15. 38.
    Dubey, P.: Inefficiency of Nash equilibria. Math. Oper. Res. 11(1), 1–8 (1986) MathSciNetMATHCrossRefGoogle Scholar
  16. 40.
    Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35(2), 159–164 (2007) MathSciNetMATHCrossRefGoogle Scholar
  17. 41.
    Falomari, D., Mandayam, N., Goodman, D.: A new framework for power control in wireless data networks: games utility and pricing. In: Proceedings of the Allerton Conference on Communication, Control, and Computing, pp. 546–555 (1998) Google Scholar
  18. 47.
    Friedman, D.: Evolutionary games in economics. Econometrica 59, 637–666 (1991) MathSciNetMATHCrossRefGoogle Scholar
  19. 49.
    Fudenberg, D., Levine, D.K.: Theory of Learning in Games. MIT Press, Cambridge (1998) MATHGoogle Scholar
  20. 50.
    Fudenberg, D., Tirole, J.: Game Theory, 2nd edn. MIT Press, Cambridge (1991) Google Scholar
  21. 60.
    Huang, M., Malhame, R.P., Caines, P.E.: Nash certainty equivalence in large population stochastic dynamic games: connections with the physics of interacting particle systems. In: Proceedings of the 45th IEEE Conference on Decision and Control, December, pp. 4921–4926 (2006) CrossRefGoogle Scholar
  22. 61.
    Ji, H., Huang, C.: Non-cooperative uplink power control in cellular radio systems. Wirel. Netw. 4(3), 233–240 (1998) CrossRefGoogle Scholar
  23. 63.
    Johari, R., Mannor, S., Tsitsiklis, J.N.: Efficiency loss in a resource allocation game: a single link in elastic supply. In: Proceedings of the 43rd IEEE Conference on Decision and Control, December, pp. 4679–4683 (2004) Google Scholar
  24. 64.
    Johari, R., Tsitsiklis, J.: Efficiency loss in a network resource allocation game. Math. Oper. Res. 29(3), 407–435 (2004) MathSciNetMATHCrossRefGoogle Scholar
  25. 68.
    Kelly, F.P., Maulloo, A.K., Tan, D.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998) MATHGoogle Scholar
  26. 72.
    Koskie, S., Gajic, Z.: A Nash game algorithm for SIR-based power control in 3G wireless CDMA networks. IEEE/ACM Trans. Netw. 13(5), 1017–1026 (2005) CrossRefGoogle Scholar
  27. 73.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Proceedings of the 16th Annual Symposium STACS, pp. 404–413 (1999) Google Scholar
  28. 76.
    Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003) CrossRefGoogle Scholar
  29. 78.
    Libman, L., Orda, A.: The designer’s perspective to atomic noncooperative networks. IEEE/ACM Trans. Netw. 7(6), 875–884 (1999) CrossRefGoogle Scholar
  30. 79.
    Loja, A., et al.: Inter-domain routing in multiprovider optical networks: game theory and simulations. In: Proceedings of Next Gen. Internet Networks, May, pp. 157–164 (2005) CrossRefGoogle Scholar
  31. 80.
    Low, S., Paganini, F., Doyle, J.: Internet congestion control. IEEE Control Syst. Mag. 22(1), 28–43 (2002) CrossRefGoogle Scholar
  32. 81.
    Low, S.H., Lapsley, D.E.: Optimization flow control-I: basic algorithm and convergence. IEEE/ACM Trans. Netw. 7(6), 861–874 (1999) CrossRefGoogle Scholar
  33. 82.
    Luo, Z., Pang, J.: Analysis of iterative waterfilling algorithm for multiuser power control in digital subscriber lines. EURASIP J. Appl. Signal Process. 2006, 1–10 (2006) Google Scholar
  34. 83.
    Marbach, P., Berry, R.: Downlink resource allocation and pricing for wireless networks. In: Proceedings of the 21st IEEE Conference on Computer Communications (INFOCOM), June, pp. 1470–1479 (2002) Google Scholar
  35. 84.
    Marden, J.R., Arslan, G., Shamma, J.S.: Joint strategy fictitious play with inertia for potential games. In: Proceedings of the 44th IEEE Conference on Decision and Control, December, pp. 6692–6697 (2005) CrossRefGoogle Scholar
  36. 87.
    Mitra, D.: An asynchronous distributed algorithm for power control in cellular radio systems. In: Proceedings of the 4th WINLAB Workshop on Third Generation Wireless Information Networks, November, pp. 249–257 (1993) Google Scholar
  37. 96.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951) MathSciNetMATHCrossRefGoogle Scholar
  38. 97.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) MATHGoogle Scholar
  39. 99.
    Ozdaglar, A., Bertsekas, D.: Routing and wavelength assignment in optical networks. IEEE/ACM Trans. Netw. 11(2), 259–272 (2003) CrossRefGoogle Scholar
  40. 112.
    Pan, Y., Pavel, L.: Games with coupled propagated constraints in optical networks with multi-link topologies. Automatica 45(4), 871–880 (2009) MathSciNetMATHCrossRefGoogle Scholar
  41. 118.
    Pavel, L.: A noncooperative game approach to OSNR optimization in optical networks. IEEE Trans. Autom. Control 51(5), 848–852 (2006) MathSciNetCrossRefGoogle Scholar
  42. 120.
    Pavel, L.: An extension of duality to a game-theoretic framework. Automatica 43(2), 226–237 (2007) MathSciNetMATHCrossRefGoogle Scholar
  43. 122.
    Perakis, G.: The price of anarchy when costs are non-separable and asymmetric. In: Proceedings of the 10th International Integer Programming and Combinatorial Optimization (IPCO) Conference, June, pp. 46–58 (2004) Google Scholar
  44. 123.
    Perakis, G.: The “price of anarchy” under nonlinear and asymmetric costs. Math. Oper. Res. 32(3), 614–628 (2007) MathSciNetMATHCrossRefGoogle Scholar
  45. 125.
    Ramaswami, R., Sivarajan, K.: Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995) CrossRefGoogle Scholar
  46. 128.
    Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965) MathSciNetMATHCrossRefGoogle Scholar
  47. 129.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005) Google Scholar
  48. 131.
    Rouskas, G., Perros, H.: A tutorial on optical networks. In: Advanced Lectures on Networking, vol. 2497, pp. 155–193. Springer, Berlin (2002) CrossRefGoogle Scholar
  49. 133.
    Saraydar, C., Mandayam, N.B., Goodman, D.J.: Pricing and power control in a multicell wireless data network. IEEE J. Sel. Areas Commun. 19(10), 1883–1892 (2001) CrossRefGoogle Scholar
  50. 134.
    Saraydar, C., Mandayam, N.B., Goodman, D.J.: Efficient power control via pricing in wireless data networks. IEEE Trans. Commun. 50(2), 291–303 (2002) CrossRefGoogle Scholar
  51. 137.
    Shamma, J.S., Arslan, G.: Dynamic fictitious play, dynamic gradient play and distributed convergence to Nash equilibria. IEEE Trans. Autom. Control 50(1), 312–326 (2005) MathSciNetCrossRefGoogle Scholar
  52. 139.
    Shen, H., Basar, T.: Differentiated Internet pricing using a hierarchical network game model. In: Proceedings of the 2004 American Control Conference, June, pp. 2322–2327 (2004) Google Scholar
  53. 152.
    Strand, J., Chiu, A., Tkach, R.: Issues for routing in the optical layer. IEEE Commun. Mag. 39(2), 81–87 (2001) CrossRefGoogle Scholar
  54. 153.
    Tan, C., Palomar, D., Chiang, M.: Solving nonconvex power control problems in wireless networks: low SIR regime and distributed algorithms. In: Proceedings of the 48th IEEE Global Telecommunications Conference (GLOBECOM), November (2005) Google Scholar
  55. 156.
    Turkcu, O., Subramaniam, S.: Blocking in reconfigurable optical networks. In: Proceedings of the 26th IEEE Conference on Computer Communications (INFOCOM), May, pp. 188–196 (2007) CrossRefGoogle Scholar
  56. 159.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944) MATHGoogle Scholar
  57. 160.
    Yaiche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Trans. Netw. 8(5), 667–678 (2000) CrossRefGoogle Scholar
  58. 162.
    Yassine, A., et al.: Competitive game theoretic optimal routing in optical networks. In: Proceedings SPIE, May, pp. 27–36 (2002) CrossRefGoogle Scholar
  59. 163.
    Yates, R.: A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341–1347 (1995) MathSciNetCrossRefGoogle Scholar
  60. 165.
    Zang, H., Jue, J., Mukherjee, B.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1(1), 47–60 (2000) Google Scholar
  61. 166.
    Zhu, H., Mukherjee, B.: Online connection provisioning in metro optical WDM networks using reconfigurable OADMs. IEEE/OSA J. Lightwave Technol. 23(10), 2893–2901 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations