Advertisement

Abstract

This chapter provides an introduction and overview of the monograph, which is aimed at understanding how control algorithms can be designed for optical networks from a game-theoretic perspective. The first section gives a review of work in game theory for networks, followed by a brief introduction to the area of optical networks. The last section presents the scope of the monograph, followed by a chapter by chapter description of the monograph.

Keywords

Game Theory Wavelength Division Multiplex Optical Line Terminal Virtual Topology Fiber Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acemoglu, D., Ozaglar, A.: Costs of competition in general networks. In: Proceedings of the 44th IEEE Conference on Decision and Control, December, pp. 5324–5329 (2005) CrossRefGoogle Scholar
  2. 2.
    Agrawal, G.P.: Fiber-Optic Communication Systems, 3rd edn. Wiley, New York (2002) CrossRefGoogle Scholar
  3. 4.
    Alpcan, T., Basar, T.: A game-theoretic framework for congestion control in general topology networks. In: Proceedings of the 41st IEEE Conference on Decision and Control, December, pp. 1218–1224 (2002) CrossRefGoogle Scholar
  4. 8.
    Alpcan, T., Basar, T., Srikant, R., Altman, E.: CDMA uplink power control as a noncooperative game. In: Proceedings of the 40th IEEE Conference on Decision and Control, December, pp. 197–202 (2001) Google Scholar
  5. 9.
    Alpcan, T., Fan, X., Basar, T., Arcak, M., Wen, J.T.: Power control for multicell CDMA wireless networks: a team optimization approach. Wirel. Netw. 14(5), 647–657 (2008) CrossRefGoogle Scholar
  6. 10.
    Altman, E., Altman, Z.: S-modular games and power control in wireless networks. IEEE Trans. Autom. Control 48(5), 839–842 (2003) MathSciNetCrossRefGoogle Scholar
  7. 11.
    Altman, E., Basar, T.: Multiuser rate-based flow control. IEEE Trans. Commun. 46(7), 940–949 (1998) CrossRefGoogle Scholar
  8. 12.
    Altman, E., Basar, T., Jimenez, T., Shimkin, N.: Routing into two parallel links: game-theoretic distributed algorithms. J. Parallel Distrib. Comput. 61(9), 1367–1381 (2001) MATHCrossRefGoogle Scholar
  9. 13.
    Altman, E., Basar, T., Srikant, R.: Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users. IEEE Trans. Autom. Control 47(6), 917–930 (2002) MathSciNetCrossRefGoogle Scholar
  10. 14.
    Altman, E., Boulogne, T., El-Azouziand, R., Jimenez, T., Wynter, L.: A survey on networking games in telecommunications. Comput. Oper. Res. 33(2), 286–311 (2006) MathSciNetMATHCrossRefGoogle Scholar
  11. 16.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954) MathSciNetMATHCrossRefGoogle Scholar
  12. 20.
    Basar, T., Olsder, G.J.: In: Dynamic Noncooperative Game Theory. SIAM Series Classics in Applied Mathematics, 2nd edn. (1999) Google Scholar
  13. 21.
    Basar, T., Srikant, R.: Revenue-maximizing pricing and capacity expansion in a many-users regime. In: Proceedings of the 21st IEEE Conference on Computer Communications (INFOCOM), June 2002, pp. 294–301 (2002) Google Scholar
  14. 36.
    de Meyer, B., Marino, A.: Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides. In: Cahiers de la Maison des Sciences Economiques, pp. 1–7 (2005) Google Scholar
  15. 38.
    Dubey, P.: Inefficiency of Nash equilibria. Math. Oper. Res. 11(1), 1–8 (1986) MathSciNetMATHCrossRefGoogle Scholar
  16. 40.
    Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35(2), 159–164 (2007) MathSciNetMATHCrossRefGoogle Scholar
  17. 41.
    Falomari, D., Mandayam, N., Goodman, D.: A new framework for power control in wireless data networks: games utility and pricing. In: Proceedings of the Allerton Conference on Communication, Control, and Computing, pp. 546–555 (1998) Google Scholar
  18. 47.
    Friedman, D.: Evolutionary games in economics. Econometrica 59, 637–666 (1991) MathSciNetMATHCrossRefGoogle Scholar
  19. 49.
    Fudenberg, D., Levine, D.K.: Theory of Learning in Games. MIT Press, Cambridge (1998) MATHGoogle Scholar
  20. 50.
    Fudenberg, D., Tirole, J.: Game Theory, 2nd edn. MIT Press, Cambridge (1991) Google Scholar
  21. 60.
    Huang, M., Malhame, R.P., Caines, P.E.: Nash certainty equivalence in large population stochastic dynamic games: connections with the physics of interacting particle systems. In: Proceedings of the 45th IEEE Conference on Decision and Control, December, pp. 4921–4926 (2006) CrossRefGoogle Scholar
  22. 61.
    Ji, H., Huang, C.: Non-cooperative uplink power control in cellular radio systems. Wirel. Netw. 4(3), 233–240 (1998) CrossRefGoogle Scholar
  23. 63.
    Johari, R., Mannor, S., Tsitsiklis, J.N.: Efficiency loss in a resource allocation game: a single link in elastic supply. In: Proceedings of the 43rd IEEE Conference on Decision and Control, December, pp. 4679–4683 (2004) Google Scholar
  24. 64.
    Johari, R., Tsitsiklis, J.: Efficiency loss in a network resource allocation game. Math. Oper. Res. 29(3), 407–435 (2004) MathSciNetMATHCrossRefGoogle Scholar
  25. 68.
    Kelly, F.P., Maulloo, A.K., Tan, D.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998) MATHGoogle Scholar
  26. 72.
    Koskie, S., Gajic, Z.: A Nash game algorithm for SIR-based power control in 3G wireless CDMA networks. IEEE/ACM Trans. Netw. 13(5), 1017–1026 (2005) CrossRefGoogle Scholar
  27. 73.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Proceedings of the 16th Annual Symposium STACS, pp. 404–413 (1999) Google Scholar
  28. 76.
    Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003) CrossRefGoogle Scholar
  29. 78.
    Libman, L., Orda, A.: The designer’s perspective to atomic noncooperative networks. IEEE/ACM Trans. Netw. 7(6), 875–884 (1999) CrossRefGoogle Scholar
  30. 79.
    Loja, A., et al.: Inter-domain routing in multiprovider optical networks: game theory and simulations. In: Proceedings of Next Gen. Internet Networks, May, pp. 157–164 (2005) CrossRefGoogle Scholar
  31. 80.
    Low, S., Paganini, F., Doyle, J.: Internet congestion control. IEEE Control Syst. Mag. 22(1), 28–43 (2002) CrossRefGoogle Scholar
  32. 81.
    Low, S.H., Lapsley, D.E.: Optimization flow control-I: basic algorithm and convergence. IEEE/ACM Trans. Netw. 7(6), 861–874 (1999) CrossRefGoogle Scholar
  33. 82.
    Luo, Z., Pang, J.: Analysis of iterative waterfilling algorithm for multiuser power control in digital subscriber lines. EURASIP J. Appl. Signal Process. 2006, 1–10 (2006) Google Scholar
  34. 83.
    Marbach, P., Berry, R.: Downlink resource allocation and pricing for wireless networks. In: Proceedings of the 21st IEEE Conference on Computer Communications (INFOCOM), June, pp. 1470–1479 (2002) Google Scholar
  35. 84.
    Marden, J.R., Arslan, G., Shamma, J.S.: Joint strategy fictitious play with inertia for potential games. In: Proceedings of the 44th IEEE Conference on Decision and Control, December, pp. 6692–6697 (2005) CrossRefGoogle Scholar
  36. 87.
    Mitra, D.: An asynchronous distributed algorithm for power control in cellular radio systems. In: Proceedings of the 4th WINLAB Workshop on Third Generation Wireless Information Networks, November, pp. 249–257 (1993) Google Scholar
  37. 96.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951) MathSciNetMATHCrossRefGoogle Scholar
  38. 97.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game Theory. Cambridge University Press, Cambridge (2007) MATHGoogle Scholar
  39. 99.
    Ozdaglar, A., Bertsekas, D.: Routing and wavelength assignment in optical networks. IEEE/ACM Trans. Netw. 11(2), 259–272 (2003) CrossRefGoogle Scholar
  40. 112.
    Pan, Y., Pavel, L.: Games with coupled propagated constraints in optical networks with multi-link topologies. Automatica 45(4), 871–880 (2009) MathSciNetMATHCrossRefGoogle Scholar
  41. 118.
    Pavel, L.: A noncooperative game approach to OSNR optimization in optical networks. IEEE Trans. Autom. Control 51(5), 848–852 (2006) MathSciNetCrossRefGoogle Scholar
  42. 120.
    Pavel, L.: An extension of duality to a game-theoretic framework. Automatica 43(2), 226–237 (2007) MathSciNetMATHCrossRefGoogle Scholar
  43. 122.
    Perakis, G.: The price of anarchy when costs are non-separable and asymmetric. In: Proceedings of the 10th International Integer Programming and Combinatorial Optimization (IPCO) Conference, June, pp. 46–58 (2004) Google Scholar
  44. 123.
    Perakis, G.: The “price of anarchy” under nonlinear and asymmetric costs. Math. Oper. Res. 32(3), 614–628 (2007) MathSciNetMATHCrossRefGoogle Scholar
  45. 125.
    Ramaswami, R., Sivarajan, K.: Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995) CrossRefGoogle Scholar
  46. 128.
    Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965) MathSciNetMATHCrossRefGoogle Scholar
  47. 129.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005) Google Scholar
  48. 131.
    Rouskas, G., Perros, H.: A tutorial on optical networks. In: Advanced Lectures on Networking, vol. 2497, pp. 155–193. Springer, Berlin (2002) CrossRefGoogle Scholar
  49. 133.
    Saraydar, C., Mandayam, N.B., Goodman, D.J.: Pricing and power control in a multicell wireless data network. IEEE J. Sel. Areas Commun. 19(10), 1883–1892 (2001) CrossRefGoogle Scholar
  50. 134.
    Saraydar, C., Mandayam, N.B., Goodman, D.J.: Efficient power control via pricing in wireless data networks. IEEE Trans. Commun. 50(2), 291–303 (2002) CrossRefGoogle Scholar
  51. 137.
    Shamma, J.S., Arslan, G.: Dynamic fictitious play, dynamic gradient play and distributed convergence to Nash equilibria. IEEE Trans. Autom. Control 50(1), 312–326 (2005) MathSciNetCrossRefGoogle Scholar
  52. 139.
    Shen, H., Basar, T.: Differentiated Internet pricing using a hierarchical network game model. In: Proceedings of the 2004 American Control Conference, June, pp. 2322–2327 (2004) Google Scholar
  53. 152.
    Strand, J., Chiu, A., Tkach, R.: Issues for routing in the optical layer. IEEE Commun. Mag. 39(2), 81–87 (2001) CrossRefGoogle Scholar
  54. 153.
    Tan, C., Palomar, D., Chiang, M.: Solving nonconvex power control problems in wireless networks: low SIR regime and distributed algorithms. In: Proceedings of the 48th IEEE Global Telecommunications Conference (GLOBECOM), November (2005) Google Scholar
  55. 156.
    Turkcu, O., Subramaniam, S.: Blocking in reconfigurable optical networks. In: Proceedings of the 26th IEEE Conference on Computer Communications (INFOCOM), May, pp. 188–196 (2007) CrossRefGoogle Scholar
  56. 159.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944) MATHGoogle Scholar
  57. 160.
    Yaiche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Trans. Netw. 8(5), 667–678 (2000) CrossRefGoogle Scholar
  58. 162.
    Yassine, A., et al.: Competitive game theoretic optimal routing in optical networks. In: Proceedings SPIE, May, pp. 27–36 (2002) CrossRefGoogle Scholar
  59. 163.
    Yates, R.: A framework for uplink power control in cellular radio systems. IEEE J. Sel. Areas Commun. 13(7), 1341–1347 (1995) MathSciNetCrossRefGoogle Scholar
  60. 165.
    Zang, H., Jue, J., Mukherjee, B.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1(1), 47–60 (2000) Google Scholar
  61. 166.
    Zhu, H., Mukherjee, B.: Online connection provisioning in metro optical WDM networks using reconfigurable OADMs. IEEE/OSA J. Lightwave Technol. 23(10), 2893–2901 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations