Shearlets pp 199-237 | Cite as

Shearlet Multiresolution and Multiple Refinement

  • Tomas SauerEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Starting from the concept of filterbanks and subband coding, we present an entirely digital approach to shearlet multiresolution which is not a discretization of the continuous transform but is naturally connected to the filtering of discrete data, the usual procedure in digital signal processing. It will be shown that a full analogy of multiresolution analysis (MRA) can be derived also for shearlets as a special instance of multiple MRA (MMRA) based on cascading a finite number of filterbanks. In this discrete shearlet transform, the MMRA concept goes hand in hand with shear-based scaling matrices of a particularly appealing and simple geometry. Finally, also some application issues of such discrete transformations will be considered briefly.

Key words

Filterbank Multiresolution analysis Multiple MRA Shearlet MRA Subdivision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, W.W., Loustaunau, P.: An Introduction to Groebner Bases, Graduate Studies in Mathematics, vol. 3. AMS (1994)Google Scholar
  2. 2.
    Benedetto, J.J., Treiber, O.M.: Wavelet frames: multiresolution analysis and extension principles. In: Wavelet transforms and time-frequency signal analysis, Appl. Numer. Harmon. Anal., pp. 3–36. Birkhäuser Boston (2001)Google Scholar
  3. 3.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision, Memoirs of the AMS, vol. 93 (453). Amer. Math. Soc. (1991)Google Scholar
  4. 4.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2. edn. Undergraduate Texts in Mathematics. Springer–Verlag (1996)Google Scholar
  5. 5.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathematics, vol. 185. Springer Verlag (1998)Google Scholar
  6. 6.
    Cox, D.A., Sturmfels, B. (eds.): Applications of Computational Algebraic Geometry. AMS (1998)Google Scholar
  7. 7.
    Dahmen, W., Micchelli, C.A.: Biorthogonal wavelet expansion. Constr. Approx. 13, 294–328 (1997)MathSciNetGoogle Scholar
  8. 8.
    Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM (1992)Google Scholar
  9. 9.
    Derado, J.: Multivariate refinable interpolating functions. Appl. Comput. Harmonic Anal. 7, 165–183 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1989)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numerica 11, 73–144 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer (1994)Google Scholar
  13. 13.
    Faber, G.: Über stetige Funktionen. Math. Ann. 66, 81–94 (1909)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Föllinger, O.: Laplace-, Fourier- und z–Transformation. Hüthig (2000)Google Scholar
  15. 15.
    Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Commentationes societate regiae scientiarum Gottingensis recentiores III (1816)Google Scholar
  16. 16.
    Guo, K., Labate, D., Lim, W., Weiss, G., Wilson, E.: Wavelets with composite dilations and their MRA properties. Appl. Comput. Harmon. Anal. 20, 231–249 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hamming, R.W.: Digital Filters. Prentice–Hall (1989). Republished by Dover Publications, 1998Google Scholar
  18. 18.
    Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155, 43–67 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Han, B., Kutyniok, G., Shen, Z.: A unitary extension principle for shearlet systems. Math. Comp. (2011). Accepted for publicationGoogle Scholar
  20. 20.
    Jia, R.Q., Micchelli, C.A.: On the linear independence for integer translates of a finite number of functions. Proc. Edinburgh Math. Soc. 36, 69–85 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kurtz, A.: Die schnelle Shearletzerlegung. Bachelor Thesis, Justus–Liebig–Universität Gießen (2010)Google Scholar
  22. 22.
    Kutyniok, G., Sauer, T.: Adaptive directional subdivision schemes and shearlet multiresolution analysis. SIAM J. Math. Anal. 41, 1436–1471 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Latour, V., Müller, J., Nickel, W.: Stationary subdivision for general scaling matrices. Math. Z. 227, 645–661 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lian, J.: On a-ary subdivision for curve design. III. 2m-point and (2m + 1)-point interpolatory schemes. Appl. Appl. Math. 4, 434–444 (2009)Google Scholar
  25. 25.
    Logar, A., Sturmfels, B.: Algorithms for the Quillen–Suslin theorem. J. Algebra 145, 231–239 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of \({L}^{2}\left (\mathbb{R}\right )\). Trans. Amer. Math. Soc. 315, 69–87 (1989)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2. edn. Academic Press (1999)Google Scholar
  28. 28.
    Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix Inequalities. Prindle, Weber & Schmidt (1969). Paperback reprint, Dover Publications, 1992Google Scholar
  29. 29.
    Micchelli, C.A.: Interpolatory subdivision schemes and wavelets. J. Approx. Theory 86, 41–71 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Möller, H.M., Sauer, T.: Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials. Adv. Comput. Math. 20, 205–228 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Park, H., Woodburn, C.: An algorithmic proof of suslin’s stability theorem for polynomial rings. J. Algebra 178, 277–298 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Park, H.J.: A computational theory of Laurent polynomial rings and multidimensional FIR systems. Ph.D. thesis, University of California at Berkeley (1995)Google Scholar
  33. 33.
    Ron, A., Shen, Z.: Affine systems in \({L}^{2}\left ({\mathbb{R}}^{d}\right )\): The analysis of the analysis operator. J. Funct. Anal. 148, 408–447 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Rushdie, S.: Shame. Jonathan Cape Ltd. (1983)Google Scholar
  35. 35.
    Sauer, T.: Multivariate refinable functions, difference and ideals—a simple tutorial. J. Comput. Appl. Math. 221, 447–459 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Sauer, T.: Multiple subdivision. In: Curves and Surfaces 2010, 7th International Conference, Avignon, France, June 24–30, Lecture Notes in Computer Science, Vol. 6920. Springer (2011)Google Scholar
  37. 37.
    Schüßler, H.W.: Digitale Signalverarbeitung, 3. edn. Springer (1992)Google Scholar
  38. 38.
    Sweldens, W.: The lifting scheme: a custom–design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3, 186–200 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Vetterli, M., Kovačević, J.: Wavelets and Subband Coding. Prentice Hall (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Lehrstuhl für Numerische MathematikJustus-Liebig-Universität GießenGießenGermany

Personalised recommendations