Skip to main content
Book cover

Shearlets pp 39–67Cite as

Shearlets and Microlocal Analysis

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Although wavelets are optimal for describing pointwise smoothness properties of univariate functions, they fail to efficiently characterize the subtle geometric phenomena of multidimensional singularities in high-dimensional functions. Mathematically these phenomena can be captured by the notion of the wavefront set which describes point- and direction-wise smoothness properties of tempered distributions. After familiarizing ourselves with the definition and basic properties of the wavefront set, we show that the shearlet transform offers a simple and convenient way to characterize the wavefront set in terms of the decay properties of the shearlet coefficients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali. Two-Dimensional Wavelets and their Relatives. Cambridge University Press, 2004.

    Google Scholar 

  2. E. Candes and L. Demanet. The curvelet representation of wave propagators is optimally sparse. Communications in Pure and Applied Mathematics, 58:1472–1528, 2004.

    Article  MathSciNet  Google Scholar 

  3. E. Candes and D. Donoho. Continuous curvelet transform: I. resolution of the wavefront set. Applied and Computational Harmonic Analysis, 19(2):162–197, 2005.

    Google Scholar 

  4. E. Candes and D. Donoho. Continuous curvelet transform: II. discretization and frames. Applied and Computational Harmonic Analysis, 19(2):198–222, 2005.

    Google Scholar 

  5. S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke. The uncertainty principle associated with the continuous shearlet transform. International Journal of Wavelets Multiresolution and Information Processing, 6(2):157, 2008.

    Google Scholar 

  6. I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

    Google Scholar 

  7. S. R. Deans. The Radon Transform and Some of Its Applications. John Wiley and Sons, 1983.

    Google Scholar 

  8. K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, 2001.

    Google Scholar 

  9. P. Grohs. Continuous shearlet frames and resolution of the wavefront set. Monatshefte für Mathematik, 164(4):393–426, 2011.

    Article  MATH  Google Scholar 

  10. P. Grohs. Continuous shearlet tight frames. Journal of Fourier Analysis and Applications, 17(3):506–518, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Guo and D. Labate. Optimally sparse multidimensional representation using shearlets. SIAM journal on mathematical analysis, 39(1):298–318, 2008.

    Article  MathSciNet  Google Scholar 

  12. K. Guo and D. Labate. Representation of Fourier integral operators using shearlets. Journal of Fourier Analysis and Applications, 14(3):327–371, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Guo and D. Labate. Characterization and analysis of edges using the continuous shearlet transform. SIAM journal on Imaging Sciences, 2:959–986, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Guo, D. Labate, and W.-Q. Lim. Edge analysis and identification using the continuous shearlet transform. Applied and Computational Harmonic Analysis, 27(1):24–46, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Hewitt and K. Ross. Abstract Harmonic Analysis I. Springer, 1979.

    Google Scholar 

  16. M. Holschneider and P. Tchamitchian. Pointwise analysis of Riemann’s “nondifferentiable” function. Inventiones Mathematicae, 105:157–175, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Hörmander. The Analysis of linear Partial Differential Operators. Springer, 1983.

    Google Scholar 

  18. G. Kutyniok and D. Labate. Resolution of the wavefront set using continuous shearlets. Transactions of the American Mathematical Society, 361:2719–2754, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Kutyniok and W.-Q. Lim. Compactly supported shearlets are optimally sparse. Technical report, 2010.

    Google Scholar 

  20. S. Mallat. A wavelet tour of signal processing. Academic Press, 2003.

    Google Scholar 

  21. A. Martinez. An Introduction to Semiclassical and Microlocal Analysis. Springer, 2002.

    Google Scholar 

  22. W. Rudin. Functional Analysis. Mc Graw-Hill, 1991.

    Google Scholar 

  23. H. Smith. A Hardy space for Fourier integral operators. Journal of Geometric Analysis, 8:629–653, 1998.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council under grant ERC AdG 247277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Grohs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grohs, P. (2012). Shearlets and Microlocal Analysis. In: Kutyniok, G., Labate, D. (eds) Shearlets. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8316-0_2

Download citation

Publish with us

Policies and ethics