Modern Factorization Methods

Part of the Modern Birkhäuser Classics book series (MBC)


The art of decomposing large integers into prime factors has advanced considerably during the last 25 years. It is the advent of high-speed computers that has rekindled interest in this field. This development has followed several lines. In one of these, already existing theoretical methods and known algorithms have been carefully analyzed and perfected. As an example of this work we mention Michael Morrison’s and John Brillhart’s analysis of an old factorization method, the continued fraction algorithm, going back to ideas introduced already by Legendre and developed further by Maurice Kraïtchik, D. H. Lehmer and R. E. Powers.


Factorization Method Quadratic Residue Continue Fraction Expansion Search Limit Large Prime Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. M. Pollard, “Theorems on Factorization and Primality Testing,” Proc. Cambr. Philos. Soc. 76 (1974) pp. 521–528.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    H. C. Williams, “A p+1 Method of Factoring,” Math. Comp. 39 (1982) pp. 225–234.MathSciNetMATHGoogle Scholar
  3. 3.
    J. M. Pollard, “A Monte Carlo Method for Factorization,” Nordisk Tidskriftför Infor-mationsbehandling (BIT) 15 (1975) pp. 331–334.MathSciNetMATHGoogle Scholar
  4. 4.
    Richard P. Brent, “An Improved Monte Carlo Factorization Algorithm,” Nordisk Tidskriftför Informationsbehandling (BIT) 20 (1980) pp. 176–184.MathSciNetMATHGoogle Scholar
  5. 5.
    Richard P. Brent and J. M. Pollard, “Factorization of the Eighth Fermat Number,” Math. Comp. 36 (1981) pp. 627–630.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    C. F. Gauss, Disquisitiones Aritmeticae, Yale University Press, New Haven, 1966, Art. 329–332.Google Scholar
  7. 7.
    Duncan A. Buell, Binary Quadratic Forms. Classical Theory and Modern Computations, Springer-Verlag, New York, 1989.MATHGoogle Scholar
  8. 8.
    Daniel Shanks, “Class Number, A Theory of Factorization, and Genera,” Amer. Math. Soc. Proc. Symposia in Pure Math. 20 (1971) pp. 415–440.MathSciNetGoogle Scholar
  9. 9.
    Louis Monier, Algorithmes de Factorisations d’Entiers, IRIA, Paris, 1980, pp. 3.13– 3.24.Google Scholar
  10. 10.
    R. J. Schoof, “Quadratic Fields and Factorization,” in H. W. Lenstra, Jr. and R. Tijdeman (eds.), Computational Methods in Number Theory, Part II, Mathematisch Centrum, Amsterdam, 1982, pp. 235–286.Google Scholar
  11. 11.
    Henri Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, New York, 1993.MATHGoogle Scholar
  12. 12.
    Michael A. Morrison and John Brillhart, “A Method of Factoring and the Factorization of F 7,” Math. Comp. 29 (1975) pp. 183 2013; 205.MathSciNetMATHGoogle Scholar
  13. 13.
    D. H. Lehmer and R. E. Powers, “On Factoring Large Numbers,” Bull. Am. Math. Soc. 37 (1931) pp. 770–776.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Maurice Kraïtchik, Théorie des Nombres, Tome II, Gauthiers-Villars, Paris, 1926, pp. 195–208.MATHGoogle Scholar
  15. 15.
    Carl Pomerance, “Analysis and Comparison of Some Integer Factoring Algorithms,” in H. W. Lenstra, Jr. and R. Tijdeman (eds.), Computational Methods in Number Theory, Part I, Mathematisch Centrum Tract 154, Amsterdam, 1982, pp. 89–139.Google Scholar
  16. 16.
    Carl Pomerance and Samuel S. Wagstaff, Jr., “Implementation of the Continued Fraction Integer Factoring Algorithm,” Congr. Num. 37 (1983) pp. 99–118.MathSciNetGoogle Scholar
  17. 17.
    Thorkil Naur, Integer Factorization, DAIMI report, University of Aarhus, 1982.Google Scholar
  18. 18.
    Thorkil Naur, “New Integer Factorizations;” Math. Comp. 41 (1983) pp. 687–695.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    A. A. Mullin, “Recursive Function Theory,” Bull. Am. Math. Soc. 69 (1963) p. 737.CrossRefGoogle Scholar
  20. 20.
    Carl Pomerance, “The Quadratic Sieve Factoring Algorithm,” in Advances of Cryp-tology, Proc. of Eurocrypt 84, Lecture Notes in Computer Sc. 209, Springer-Verlag, Berlin, 1985 pp. 169–182.Google Scholar
  21. 21.
    James A. Davis and Diane B. Holdridge, “Factorization Using the Quadratic Sieve Algorithm,” SANDIA report, SAND83–1346, SANDIA National Laboratories, Livermore, 1983.Google Scholar
  22. 22.
    R. D. Silverman, “The Multiple Polynomial Quadratic Sieve,” Math. Comp. 48 (1987) pp. 329–339.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    D. Wiedemann, “Solving Sparse Linear Equations over Finite Fields,” IEEE Trans. Inform. Theory 32 (1986) pp. 54–62.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Brigitte Vallée, “Generation of Elements with Small Modular Squares and Provably Fast Integer Factoring Algorithms, Math. Comp. 56 (1991) pp. 823–849.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    C. P. Schnorr and H. W. Lenstra, Jr., “A Monte Carlo Factoring Algorithm with Linear Storage,” Math. Comp. 43 (1984) pp. 289–311.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    H. W. Lenstra, Jr. “Factoring Integers with Elliptic Curves,” Ann. of Math. (2) 126 (1987) pp. 649–673.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Peter Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factorization,” Math. Comp. 48 (1987) pp. 243–264.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    A. O. L. Atkin and F. Morain, “Finding Suitable Curves for the Elliptic Curve Method of Factorization,” Math. Comp. 60 (1993) pp. 399–405.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Robert D. Silverman and Samuel S. Wagstaff, Jr. “A Practical Analysis of the Elliptic Curve Factoring Algorithm, Math. Comp. 61 (1993) pp. 445–462.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    J. M. Pollard, “Factoring with Cubic Integers,” in A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development of the Number Field Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, New York, 1993, pp. 4–10.CrossRefGoogle Scholar
  31. 31.
    31. J. P. Buhler, H. W. Lenstra, and C. Pomerance, “Factoring Integers with the Number Field Sieve,” in A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development of the Number Field Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, New York, 1993, pp. 50–94.CrossRefGoogle Scholar
  32. 32.
    A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, “The Factorization of the Ninth Fermat Number,” Math. Comp. 61 (1993) pp. 319–349.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Daniel J. Bernstein and A. K. Lenstra, “A General Number Field Sieve Implementation,” in A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The Development of the Number Field Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, New York, 1993, pp. 103– 126.CrossRefGoogle Scholar
  34. 34.
    J. Buchmann, J. Loho and J. Zayer, “An Implementation of the General Number Field Sieve,” in Douglas R. Stinson (ed.), Advances in Cryptology CRYPTO ’93, Lecture Notes in Computer Sc. 773, Springer-Verlag, New York, 1994, pp. 159–165.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsThe Royal Institute of TechnologyStockholmSweden

Personalised recommendations