Our objective in putting together this volume has been to develop a supplementary text for an elective upper-division undergraduate or graduate course/seminar that might be offered within the scope of a pure or applied mathematics curriculum. A quite unexpected treatment is delivered herein on two subjects that one might hardly have anticipated considering together in a single book. This makes the book an original and unique read, and a good choice for those who are open to challenges and welcome the unexpected.


Elementary Function Laplace Equation Infinite Series Partial Product Regular Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Euler, Introductio in Analysin Infinitorum, Vol. 1, Lausanne, Bousquet, 1748 Google Scholar
  2. 2.
    G.M. Robison, Summability of infinite products, Am. J. Math., 51 (1929), no. 4, pp. 653–660 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    K.M. Slepenchuk, Representation of an analytic function of two variables by means of a double infinite product (Russian), Usp. Mat. Nauk, 8 (1953), no. 2, pp. 139–152 MATHGoogle Scholar
  4. 4.
    K.M. Slepenchuk, On a property of infinite products (Russian), Usp. Mat. Nauk, 10 (1955), no. 1, pp. 151–153 MATHGoogle Scholar
  5. 5.
    V.I. Smirnov, A Course of Higher Mathematics, Vols. 1 and 4, Pergamon, Oxford, 1964 Google Scholar
  6. 6.
    M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965 Google Scholar
  7. 7.
    A. Arcache, Expansion of analytic functions in infinite series and infinite products with application to multiple valued functions, Am. Math. Mon., 72 (1965), no. 8, pp. 861–864 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V.Y. Arsenin, Basic Equations and Special Functions of Mathematical Physics, Eliffe Books, London, 1968 MATHGoogle Scholar
  9. 9.
    I.S. Gradstein and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1971 Google Scholar
  10. 11.
    Y.A. Melnikov, Some applications of the Green’s function method in mechanics, Int. J. Solids Struct., 13 (1977), pp. 1045–1058 MATHCrossRefGoogle Scholar
  11. 12.
    I.M. Dolgova and Yu.A. Melnikov, Construction of Green’s functions and matrices for equations and systems of elliptic type, J. Appl. Math. Mech., 42 (1978), pp. 740–746. Translation from Russian PMM MathSciNetMATHCrossRefGoogle Scholar
  12. 14.
    R. Blecksmith, J. Brillhart, and I. Gerst, Some infinite product identities, Math. Comput., 51 (1988), no. 183, pp. 301–314 MathSciNetMATHCrossRefGoogle Scholar
  13. 15.
    R. Haberman, Elementary Applied Partial Differential Equations, Prentice-Hall, New Jersey, 1998 MATHGoogle Scholar
  14. 16.
    Yu.A. Melnikov, Influence Functions and Matrices, Marcel Dekker, New York, 1998 MATHGoogle Scholar
  15. 17.
    Yu.A. Melnikov, Green’s function formalism extended to systems of mechanical differential equations posed on graphs, J. Eng. Math., 34 (1998), pp. 369–386 MATHCrossRefGoogle Scholar
  16. 18.
    M.A. Pinsky, Partial Differential Equations and Boundary-Value Problems with Applications, McGraw-Hill, Boston, 1998 Google Scholar
  17. 19.
    S.L. Marshall, A rapidly convergent modified Green’s function for Laplace’s equation in a rectangular region. Proc. R. Soc., 155 (1999), pp. 1739–1766 Google Scholar
  18. 20.
    W.J. Kaczor and M.T. Nowak, Problems in Mathematical Analysis, I, AMS, Providence, 2000 MATHGoogle Scholar
  19. 21.
    Yu.A. Melnikov, An alternative construction of Green’s functions for the two-dimensional heat equation, Eng. Anal. Bound. Elem., 24 (2000), pp. 467–475 MATHCrossRefGoogle Scholar
  20. 22.
    H.-G. Jeon, Expressions of infinite products, Far East J. Math. Sci., 5 (2002), no. 1, pp. 81–88 MathSciNetMATHGoogle Scholar
  21. 23.
    Yu.A. Melnikov, Influence functions of a point source for perforated compound plates with facial convection, J. Eng. Math., 49 (2004), pp. 253–270 MATHCrossRefGoogle Scholar
  22. 24.
    A.K. Ibrahim and M.A. Rakha, Numerical computations of infinite products, Appl. Math. Comput., 161 (2005), no. 1, pp. 271–283 MathSciNetMATHCrossRefGoogle Scholar
  23. 25.
    Yu.A. Melnikov and M.Yu. Melnikov, Computability of series representations of Green’s functions in a rectangle, Eng. Anal. Bound. Elem., 30 (2006), pp. 774–780 MATHCrossRefGoogle Scholar
  24. 27.
    Yu. A. Melnikov, New infinite product representations of some elementary functions, Appl. Math. Sci., 2 (2008), no. 2, pp. 81–97 MATHGoogle Scholar
  25. 28.
    Yu.A. Melnikov, A new approach to the representation of trigonometric and hyperbolic functions by infinite products, J. Math. Anal. Appl., 344 (2008), no. 1, pp. 521–534 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematical Sciences Computational Sciences ProgramMiddle Tennessee State UniversityMurfreesboroUSA

Personalised recommendations